Statistical Clustering of Odorant Molecules Based on both Molecular Profile Feature Extraction and Olfactory Bulb odor Map Imaging Analysis

Liang Shang¹, Chuanjun Liu^{1,2}, Yoichi Tomiura³, Kenshi Hayashi^{1*}

¹Department of Electronics, Graduate School of Information Science and Electrical Engineering, Kyushu University ²Research Laboratory, U.S.E. Co., Ltd., Tokyo

³Department of Informatics, Graduate School of Information Science and Electrical Engineering, Kyushu University

INTRODUCTION

- Investigations in molecular biology have demonstrated that the response pattern of odorants on olfactory bulb (odor map) are corresponding to their molecular structure.
- Detailed statistical analysis on both odor map and molecular parameter are carried out for an extensive understanding on the structure-odor relationship.
- Correlation coefficient analysis revealed that parameters were divided for 7 clusters, and each cluster showed relatively similar response pattern on olfactory bulb.
- T-distributed stochastic neighbor embedding (t-SNE) was employed for mapping odorants in 2D spaces by olfactory images and molecular parameters, respectively.
- Based on the features extracted by PCA or t-SNE, functional group identification models were calibrated by artificial neural network (ANN).
- The feasibility of odor maps and molecular parameters for odorant function group classification is discussed.

MATERIAL AND METHOD

RESULTS AND DISCUSSIONS

Total valence connectivity						
Ionization potential LogS Total connectivity	 In the molecular space (B), odorants in the same cluster are mostly (68.00%) clustered together, and more overlappings were observed. It indicated that some information, such as the length of carbon abain would not be included in molecular information. 			LVQ	65.93	69.77
F F F F F F F F F F F F F F			PCA Molecular parametert-SNE	SVM	93.33	90.70
				ELM	89.63	93.02
	However some scatters are not clustered in a cluster			LVQ	21.48	23.26
	 Hidden patterns would not been found because of the insufficiency 			SVM	82.22	83.72
dendrogram	of sample numbers.			ELM	86.67	95.35
 Cluster analysis was performed by Ward's method on Euclidean distance. The results indicated that all the parameters were clustered in 7 clusters. The parameters in the same cluster described the similar information for odorants. Most of parameters contained energy information are in cluster 1, and parameters contained polar information are in cluster 2. Compared the heat map for R-maps, similar groups were observed. Just like cluster 2 and G, cluster 5 and D, cluster 6 and F. It indicated that the molecular parameters would be sensitive to olfactory information 		CONCLUSIONS				
		 49 types of molecular parameters were clustered in 7 groups. Parameters in each cluster has a similar effect on olfactory images in rats. Some odorants are similar in molecular information space, but different in olfaction information space. However, most of odorants contained similar functional groups were clustered together. The results indicated that OI-PCA-ELM was the optimal model in distinguishing functional groups for odorants. An odorant would be described by molecular parameters to compare olfactory information. More molecular parameters would be considered to express some difficult features for odorant molecular. 				