IEEE Sensors 2017

Localized Surface Plasmon Resonance Modified with Molecularly Imprinted Sol-gel Sensor array for Plant Volatile Organic Compounds Detection

Liang Shang, Chuanjun Liu, Kenshi Hayshi*

Graduate School of Information Science and Electrical

Engineering, Kyushu University, Fukuoka, Japan

Plant Volatile Organic Compounds (PVOCs)

Extrafloral nectar attracts and nourishes a that defend the host plant against herbivore. This form of indirect defense can be inducible as well as constitutive.

Small beetles like *Chrysolina hyperici* can feed on VOC producing plants like mints, containing toxic compounds. Feeding activity alters the plant VOC emission.

Chewing herbivores like Sondoptera *Bitoralis* induce the plant emission of several monoterpenes, sesquiterpenes and homoterpenes that attract predatory wasps

Insect-induced belowground plant signals include the emission of several sesquiterpenoids which strongly attracts an entomopathogenic nematodes Spider mite (*Tetranychus urticae*) neding activities induce VOCs that attract their predators (*Phytoseiulus persimilis*).

Flowers emit VOCs like

aliphatics, benzenoids, phenyl propanoids, monoand sesquiterpenes to attract pollinators.

Unique combinations of plant VOCs are produced in response to attack by different aphid species.

> Oviposition-induced plant volatiles and contact cues for host and prey location of parasitoids and oregators.

Plant-bacteria interactions promote plant synthesis of sesquiterpenoid precursors that are eventually transformed into an array of chemically diverse VOCs.

cf.) Massimo Maffei, Plant Physiology and development, The Plant Volatilome.

Released from flowers, leaves, roots.

Attract pollinators

Plants self-protection

Spider mite

Small beetles

Act as wound sealers

Attract predators

Plant-plant communication

Localized surface plasmon resonance (LSPR)

Molecularly Imprinted Sol-gel (MISG)

MISG-LSPR sensor (AuNPs/MISG/AuNPs)

Experiment

MISG material

AuNPs/MISG/AuNPs film fabrication

Iso-propanol	2 mL	Step 1 Sputtered AuNPs and anneal	Step 2 MISG reaction solution spin coating
Ti(OBu) ₄ 1	50 µL	Sputtering AuNPs thinkness: 3nm Anneal: 500C, 2h, air, 2 times	MISG solution: 20 µL Spin coating speed: 3000 rpm
TMP	25 µL		Template molecules Titanate sol-gel martix
Template	50 µL	AuNPs	Aunps
TiCl ₄	25 µL	Step 3 Annealed for removing templates	Step 4 Re-sputtered AuNPs and anneal
TiCl ₄	25 μL	Step 3 Annealed for removing templates	Step 4 Re-sputtered AuNPs and anneal Sputtering AuNPs thinkness: 1, 3, 5, 7nm Anneal: 130°C, 1h, air

Experiment

Vapor generation and LSPR spectra testing system

Discussion

- Sol-gel layer made the plasmon peak shift to the red.
- A_{max} was **increased** and λ_{max} was **shifted to the red** via the increasing of thickness for recoating AuNPs.
- AuNPs/MISG/AuNPs film was constructed on the substrate.
- The size of Au nano-islands on MISG layer was depended on the thickness of recoating AuNPs.

Kyushu University

Selectivity of AuNPs/MISG/AuNPs sensor

Comparison selectivity of MISGs coated sensor

A specific selectivity to *cis*-jasmone vapors was obtained.

MISG-LSPR sensor array for PVOCs discrimination

- By changing the flow rates (0.3, 0.5 and 0.7 L/min),
 PVOCs with different concentrations would be obtained.
- 36 samples (4 PVOCs × 3 flow rates × 3 repeats) were obtained in this study.
- All responses were scaled for former processing.

PCA and linear discriminant analysis results for PVOCs

Kyushu University

Conclusion

- An AuNPs/MISG/AuNPs film was developed for the determination of PVOCs selectively.
- Combination of sol-gel technology and AuNPs, hot spots were constructed for enhancing the sensitivities of MISG coated LSPR sensors.
- In-situ response was verified to be **fast, selective and reversible**.
- The LOD for *cis*-jasmone sensor was 3.45 ppm.
- Based on the MISG-LSPR sensor array and the LDA model, PVOCs could be discriminated (94.4 %).

Thank you for your attention

