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Abstract To investigate the feasibility of using dielectric
spectra in nondestructively determining the soluble solids
content (SSC) of fruits, the dielectric constants and loss factors
of 160 apples of three varieties (Fuji, Red Rome, and Pink
Lady) were obtained at 51 discrete frequencies from 10 to
1800 MHz with an open-ended coaxial-line probe and an
impedance/material analyzer. Based on the joint x–y distances
sample set partitioning (SPXY) method, 106 apples were se-
lected for the calibration set and the other 54 samples were
used for the prediction set. The principal component analysis
(PCA), uninformative variables elimination method (UVE-
PLS), based on partial least squares, and successive projection
algorithm (SPA) were applied to extract characteristic vari-
ables from original full dielectric spectra. The generalized re-
gression neural network (GRNN), support vector machine
(SVM) and extreme learning machine (ELM) modeling
methods were used to establish models to predict SSC of
apples, based on the original full dielectric spectra and char-
acteristic variables, respectively. Results showed that four
principal components were selected as characteristic variables
by PCA, 15 dielectric constants and 14 loss factors at different
frequencies were selected as characteristic variables by UVE-
PLS, and one dielectric constant and ten loss factors were
chosen as feature variables by SPA. ELM combined with

SPA had the best SSC prediction performance, with calibrated
correlation coefficient and predicted correlation coefficient of
0.898 and 0.908, respectively, and calibrated root-mean-
square error and predicted root-mean-square error of 0.840
and 0.822, respectively. The study indicates that dielectric
spectra combined with artificial neural network and chemo-
metric methods might be applied in nondestructive determi-
nation of SSC of apples.

Keywords Apple . Dielectric properties . Soluble solids
content . Generalized regression neural network . Support
vector machine . Extreme learningmachine

Introduction

Fruit is a major agricultural product in the world. It is usually
sorted on the basis of size, shape, color, and surface defects.
However, internal qualities, i.e., sweetness, acidity, and firm-
ness, determine whether a fruit is appealing to customers.
Sweetness is the main attribute of fruit internal qualities. It is
usually determined by soluble solids content (SSC), which is
mostly sugars (i.e., 80–85 %), and therefore a measure of
sweetness (Guo et al. 2007a, b). Traditionally, SSC is mea-
sured with an Abbe refractometer or digital refractometer on
juice extracted from the fruit. The major shortcoming of this
method is its destructive nature. To realize fruit grading ac-
cording to internal qualities, methods must be found for non-
destructively predicting internal qualities.

Dielectric properties of materials are those electrical prop-
erties that determine the interaction of the material with elec-
tric fields. These properties can be defined in terms of the
complex relative permittivity, ε=ε '+jε ' ', where ε ', the real
part, is the dielectric constant and ε ' ', the imaginary part, is
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the dielectric loss factor. The dielectric constant is associated
with the capability of energy storage in the material, and the
loss factor is associated with energy dissipation in the material
in the form of heat. Since the first data on dielectric properties
of grain were published (Nelson et al. 1953), more and more
research has been undertaken on dielectric properties of agri-
culture products and food materials. Research has demonstrat-
ed that the dielectric properties of food materials are related to
their composition, including such constituents as water (Feng
et al. 2002), ash (Luczycka et al. 2013), and salt (Huang et al.
2013b). In studying the relationship between dielectric prop-
erties and internal qualities of honeydewmelons, a close linear
correlation was found between the dielectric properties and
SSC in the complex plane of ε '/SSC and ε ' '/SSC (Nelson
et al. 2006). However, the SSC could not be predicted well
from the linear regression model (Guo et al. 2008). Other
efforts have also been devoted to studying the linear correla-
tion between dielectric properties and SSC in either external
surface measurements or internal tissue measurements in sev-
eral kinds of fruits, such as apples (Guo et al. 2011), water-
melons (Nelson et al. 2007), and peaches (Guo and Chen
2010), but no obvious linear relationships were noted. Non-
linear models to predict internal qualities of fruits from dielec-
tric spectra need to be explored and evaluated.

Artificial neural network (ANN) analysis is an effective
nonlinear modelingmethod. It is useful in expressing complex
relationships between different variables with nonlinear
models. ANN methods have been used widely in pattern rec-
ognition (Ghiasabadi et al. 2013; Masood and Hassan 2013)
and signal processing (Qian et al. 2013; Zhang et al. 2013a, b;
Zhu et al. 2013). However, the precision of ANN models is
usually influenced by data overlap and noise. To overcome
this problem, chemometric methods are often used to extract
indispensable information from large sets of original data.
Several studies have shown that the SSC of fruits could be
predicted well from their visible/near infrared (Vis/NIR) spec-
tra when combined ANN and chemometric methods are ap-
plied (Liu et al. 2010, 2012; Peng and Lu 2008; Moller et al.
2013; Li et al. 2013; Jie et al. 2013; Jiang and Zhu 2013).
However, to our knowledge, no attempt has been made to
predict SSC of fruits from their dielectric spectra with ANN
and chemometric methods. Therefore, the dielectric spectra of
three varieties of apples (Fuji, Red Rome, and Pink Lady)
were obtained over the frequency range from 10 to
1800MHz, and chemometric methods, such as principal com-
ponent analysis (PCA), uninformative variables elimination,
based on partial least squares (UVE-PLS), and successive
projection algorithm (SPA), were applied to extract character-
istic variables from original full dielectric spectra. Several
ANN modeling models, such as generalized regression neural
network (GRNN), support vector machine (SVM), and ex-
treme learning machine (ELM), were used to establish nonlin-
ear models to predict soluble solids content of apples. The

performance of different ANN models on determination of
SSC in apples was compared when full spectra, selected char-
acteristic variables by PCA, UVE-PLS, and SPAwere used as
inputs. The feasibility of using dielectric spectra for nonde-
structive determination of SSC in apples of three varieties is
discussed.

Materials and Methods

Apples

Fresh apples of three varieties, ‘Fuji’, ‘Pink Lady’, and ‘Red
Rome’, were obtained from refrigerated apple storage rooms
in north Georgia within 2 weeks of harvest for the study.
Measurements were taken initially and at 2-week intervals
during 10 weeks of storage. At each measurement time, ten
apples of each variety were measured. Totally, 160 apples
were used in the work, including 60 ‘Fuji’, 60 ‘Pink Lady’,
and 40 ‘Red Rome’ apples. The detailed information on apple
samples was described previously (Guo et al. 2007a, b).

Dielectric Properties Measurement and Experimental
Procedures

The dielectric properties measurement system consisted of a
Hewlett-Packard 4291A impedance/material analyzer, a
Hewlett-Packard (Palo Alto, CA) 85070B open-ended coaxi-
al-line probe, a computer, and a laboratory jack. The permit-
tivities (ε ' and ε ' ') were calculated with Agilent Technologies
85070D dielectric probe kit software from the reflection coef-
ficient of the material in contact with the active tip of the
coaxial-line probe. The measurement was set at 51 discrete
frequencies on a logarithmic scale from 10 to 1800 MHz.
The schematic diagram of the dielectric properties measure-
ment system is shown in Fig. 1.

The permittivity measurements of intact apples were made
with the probe in firm contact with the surface of the apples in
the equatorial region at four points about 90° apart around the
perimeter of the fruit. The SSC of juice expressed from the
apple tissue was determined with an Atago Pallete Series
Model PR101 digital refractometer (Atago Co. Ltd., Tokyo,

Fig. 1 The schematic diagram of the dielectric properties measurement
system
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Japan). Three SSC readings were taken for each apple. Aver-
ages of the four permittivity measurements and three SSC
readings for each apple were used. All experiments were done
at room temperature (24±1 °C). The detailed calibrations for
the impedance/material analyzer and open-ended coaxial-line
probe and experimental procedures were described previously
(Guo et al. 2007a, b).

Dielectric Spectra

Each sample had two dielectric spectra, dielectric constant
spectrum and loss factor spectrum. Each spectrum was made
up of 51 values at different frequencies. Thus, the dielectric
properties collected for each sample (apple) consisted of 102
values. From 10 to 1800MHz, each value was numbered. The
obtained dielectric constants were numbered 1–51, and the
loss factors were numbered 52–102. So, the permittivity data
for each sample was a 102-dimensional vector.

Sample Division Method

Effective and rational division of the sample set is essential for
establishing models, and it always has direct influence on
prediction accuracy. Sample set partitioning based on joint
x–y distances (SPXY) is an algorithm evolved from Kennard
Stone to divide calibration set and prediction set (Galvao et al.
2005). Some studies have shown that SPXY can improve
predictive performance (Zhan et al. 2009). In SPXY, the dis-
tance of variables x and y is considered simultaneously so that
a more reasonable calibration set and prediction set can be
acquired.

Euclidean distance dx(p,q) can be calculated as:

dx p; qð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXJ

j¼1

xp jð Þ−xq jð Þ� �2vuut ; p; q∈ 1;N½ � ð1Þ

where xp(j) and xq(j) are the instrumental response at the j-th
variable of samples p and q, respectively. J refers to the num-
ber of all variables, and N refers to the number of all samples.
In this study, J and N are 102 and 160, respectively.

The value dy(p,q) can be calculated as follows:

dy p; qð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yp−yq

� �2
r

¼ yp−yq
�� ��; p; q∈ 1;N½ � ð2Þ

where yp and yq are target attributes of samples p and q,
respectively.

The value dxy(p,q) can be calculated as:

dxy p; qð Þ ¼ dx p; qð Þ
maxp;q∈ 1;N½ �dx p; qð Þ þ

dy p; qð Þ
maxp;q∈ 1;N½ �dy p; qð Þ; p; q∈ 1;N½ �

ð3Þ

Based on dxy(p,q), samples in the calibration set can be
selected to establish models. Remaining samples were used
for the prediction set to validate the established model.

Characteristic Variables Selection Methods

To reduce the effect of noise, ignore reduplicative message,
and simplify models, it is necessary to obtain characteristic or
primary variables from full frequencies of dielectric spectra
(FF).

Principal Component Analysis

PCA is a conventional information concentrating method. It is
usually used to simplify data by reducing the number of var-
iables into a smaller number of orthogonal variables. It is also
the most optimal method to seek a linear combination of the
principal components (PCs) from original variables. PCA can
explain the data structure characteristics without losing origi-
nal information. PCs are usually ordered from large to small
based on the contribution rate of each PC. The PCs listed in
front show more variance among the data, and the last few
PCs, which have lesser variance, are usually ignored because
they may have a noise effect (Nashat and Abdullah 2010).

Uninformative Variables Elimination Method Based
on Partial Least Squares

UVE-PLS is an effective pretreatment method based on re-
gression coefficient of partial least squares (PLS) to select
characteristic variables. It has been widely applied in Vis/
NIR spectra (Jie et al. 2013; Wu et al. 2013). A stability value
C and cutoff threshold are implemented to evaluate the de-
pendability of each variable. C is defined as:

Ci ¼ mean bið Þ
std bið Þ ; i ¼ 1; 2; …; m ð4Þ

where bi denotes the regression coefficient of the i-th variable
in calibration samples. mean(bi) and std(bi) are the mean and
standard deviation of bi, respectively.m is the number of input
variables. By adding artificial random samples, cutoff thresh-
old is defined as:

cutoff ¼ k � max Crandomð Þj j ð5Þ

where k is the contribution coefficient and max(Crandom) ex-
presses the maximum C of artificial random samples. The
dimension and quantity of artificial random samples are the
same as those for the calibration samples. Characteristic var-
iables were selected according to stability value of each vari-
able and cutoff threshold (Deng et al. 2013; Huang et al.
2013c). More details on the UVE-PLS process can be found
elsewhere (Centner et al. 1996).
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Successive Projection Algorithm

SPA is a forward-loop variable selection method. Based on
convex geometry and orthogonal projection, it can select some
characteristic variables to replace all variables (Zhang et al.
2008). Moreover, complexity of the model and linear correla-
tion effects between different variables can be reduced effec-
tively by SPA. After a variable is chosen, another new variable
is added each time until the preset variable number is reached.
This method has been widely used in Vis/NIR spectra pre-
processing and has provided good performance (Pontes et al.
2005; Ye et al. 2008).

Modeling Methods

Generalized Regression Neural Network

GRNN is a kind of radial basis function network. This neural
network consists of four layers: input, pattern, summation, and
output layers. In GRNN modeling, the estimated Ŷ(x), which
represents a weighted term for all observed values Yi, can be
calculated as (Specht 1991):

bY xð Þ ¼

XN
i¼1

Y iexp −
Di

2σ2

� 	
XN
i¼1

exp −
Di

2σ2

� 	 ð6Þ

where Yi expresses the i-th observed value, N is the sample
size, and σ is the wide spread coefficient of the Gaussian
function, also called the smoothing factor. Di is defined as

Di ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x−xið ÞT x−xið Þ

q
ð7Þ

where x is the observed input value and xi is the i-th neuron of
the corresponding sample. Equation 6 indicates that the
smoothing factor is the primary parameter of the GRNN.

Support Vector Machine

SVM is a machine learning method based on statistical learn-
ing theory (Burges 1998). The main idea for SVM is to build a
hyperplane as a decision surface, which makes the positive-
examples and counter-examples have the largest distance.
SVM employs a set of linear equations instead of quadratic
programming problems to obtain the support vectors, and it
embodies the structural risk minimization principle instead of
the traditional empirical risk minimization principle to avoid
overfitting problems. It is useful in studying high-dimensional
features with fewer training data. SVM has been exten-
sively used in image processing (Liu and Li 2013) and in
nondestructive evaluation (Deng et al. 2013). The SVM

regression model can be defined as follows (Cherkassky
and Ma 2004):

f xð Þ ¼
XN
i¼1

αiK x; xið Þ þ b ð8Þ

where N is the number of input vectors,αi is the i-th Lagrange
multiplier, xi is the i-th input vector, K(x,xi) is the kernel func-
tion, and b is the bias. K(x,xi) is a symmetric function that
must follow Mercer’s condition. Compared with a linear ker-
nel and other nonlinear kernels, a radial basis function (RBF)
kernel can deal with the nonlinear relationship between input
vectors and target attributes. So RBF was used as the kernel
function in this study. RBF is defined as:

K x; xið Þ ¼ exp − x−xik k2
.

2g2

 �� �

ð9Þ
where ‖x−xi‖ is the distance between the i-th input vector and
threshold vector, and g is the width vector.

Compared with other machine learning methods, SVM
shows superiority in generalization and prediction. In this
study, SVM models were established by Matlab 7.14.0.739
(R2012a;MathWorks, Massachusetts, USA) and Libsvm tool
box (http://www.csie.ntu.edu.tw/~cjlin/). Detailed
information on SVM can be found elsewhere (Collobert and
Bengio 2001; Furey et al. 2000).

Extreme Learning Machine

ELM is a new efficient single-hidden-layer feed-forward neu-
ral network with good generalization performance. Its compu-
tational process can be listed as follows.

Step 1. Given a training set L, number of input nodes N and

number of hidden-layer neurons bN. L is defined as
L={(xj,tj)|xj∈Rn,tj∈Rm, j=1,2,…,N}, where xj is
the j-th input vector (n×1) and tj is the j-th target
vector (m×1).

Then assign parameters wi and bi (i=1, 2, … bN )
randomly. wi is the weight vector which connects
input neuron nodes and the i-th hidden node. bi is a
threshold value of the i-th hidden node.

Step 2. Select an excitation function g(x). Calculate the out-
put matrix of the hidden layer H as

H w1;…;w
N
; b1;…; b

N
; x1;…; xN

� 	

¼
g w1⋅x1 þ b1ð Þ … g w

N
�⋅x1 þ b

N
�

� �
⋮ ⋯ ⋮

g w1⋅xN þ b1ð Þ … g w
N
�⋅xN þ b

N
�

� �
264

375
N�N

ð10Þ
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Step 3. Calculate the weight matrix of output by β ¼ H†T.
H† is the Moore–Penrose generalized inverse of H,
and T is the target matrix. Matrixβ and matrixT can
be calculated by

β ¼
βT
1

⋮
β

N�

264
375
N
��m

and T ¼
tT1
⋮
tTN

24 35
N�m

ð11Þ

where βi is a link weight of the i-th hidden node. More de-
tailed processing of ELM can be found in other publications
(Huang et al. 2006; Liu and Wang 2013).

Evaluation of Model Performance

Model performance of calibration and prediction is always
evaluated by the root-mean-square error of calibration
(RMSEC), root-mean-square error of prediction (RMSEP),
correlation coefficient of calibration (Rc), and correlation co-
efficient of prediction (Rp). These indices are defined as

Rc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i¼1

nc byi−yi� �2
s . ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

i¼1

nc byi−ymc� �2
s

ð12Þ

Rp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
j¼1

np by j−y j� �2

vuut . ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
j¼1

np by j−ymp� �2

vuut ð13Þ

RMSEC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

nc

X
i¼1

nc byi−yi� �2
s

ð14Þ

RMSEP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

np

X
j¼1

np by j−y j� �2

vuut ð15Þ

where ŷi and yi are the predicted value and the measured value
of the i-th sample in the calibration set, respectively; ŷj and yj
are the predicted value and the measured one of the j-th
sample in the prediction set, respectively; ymc and ymp are
the mean values of the samples in the calibration set and
the prediction set, respectively; nc and np are the numbers
of samples in the calibration set and the prediction set,
respectively (Liu et al. 2010). Usually, a model with
higher Rc and Rp and lower RMSEC and RMSEP is stable
and works well (Li et al. 2013).

Results and Discussion

Dielectric Spectra of Apples

The averages with the standard deviations of the dielectric
constants and loss factors of the three cultivars of apples over
the frequency range from 10 to 1800MHz are shown in Fig. 2.
The dependence of ε ' and ε ' ' on frequency is similar for the
three cultivars. The ε ' value decreased with increasing fre-
quency over the entire frequency range. However, an overrid-
ing dielectric relaxation behavior was observed for ε ' '. The
behavior may involve bound water and Maxwell–Wagner re-
laxations (Guo et al. 2007a, b). Figure 2 also shows that when
the frequency increased from 10 to 1800MHz, the decrease of
ε ' for ‘Fuji’ apples was the smallest, which decreased from
40.27 to 21.88, while the decrease was largest for ‘Pink Lady’
apples, from 42.74 to 20.22. The ε ' ' of ‘Pink Lady’ apples was
larger than that of ‘Fuji’ and ‘Red Rome’ over the whole
investigated frequency range. An obvious overlap of ε ' ' of
‘Fuji’ and ‘Red Rome’ apples was noted between 30 and
300 MHz. It was also noticed that both for dielectric constant
and loss factor, the standard deviations decreased with in-
creasing frequency.

Division of Samples into Calibration and Prediction Sets

One hundred sixty apples were divided into calibration and
prediction sets according to SSC with the SPXY procedure.
The ratio of samples in the calibration and prediction sets was
2:1. The calibration set consisted of 40 ‘Fuji’, 40 ‘Pink Lady’,
and 26 ‘Red Rome’ apples, and the prediction set had 20
‘Fuji’, 20 ‘Pink Lady’, and 14 ‘Red Rome’ apples. The statis-
tics for the SSC values for calibration and prediction sets are
shown in Table 1. Also, the results of the analysis of variance
(ANOVA) on SSC of the three varieties of apples are listed.
The results showed that not only in the calibration set but also
in the prediction set the SSC values of the three varieties had
significant differences at the probability level of 5 %. Table 1
also shows that the range of SSC of each variety in the cali-
bration set was larger than that in the prediction set, indicating
the sample division into the calibration and prediction sets was
reasonable.

Selection of Characteristic Variables

Selection of Characteristic Variables by PCA

Table 2 lists the accumulative contribution rates of the first
seven PCs. It indicates that the contribution rate of the first
principal component (PC1) was 99.588 %, which offers the
main contribution, and the accumulative contribution rate of
the first seven PCs came to 99.999%. Because more variables
were used in establishing the model, it causes the model be

T
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more complicated. In this work, the least amount of PCs was
applied in modeling when the accumulative contribution rate
was higher than 99.990 %. Finally, the first four PCs, whose
accumulative rate could explain 99.994% of the total variance
scores, were adopted in the study and were considered as the
inputs of the GRNN, SVM, and ELM models.

Selection of Characteristic Variables by UVE-PLS

UVE-PLS process is influenced by some underlying vari-
ables of PLS, which are usually called latent variables
(Wold et al. 2001). However, the number of latent variables
is not known usually. Therefore, different numbers of latent
variables were used as the inputs of PLS to establish the
UVE-PLS model to eliminate uninformative variables from
the dielectric spectra of dielectric constant and loss factor.
The numbers of eliminated uninformative variables are of-
ten different when different latent variables are used in
UVE-PLS. A previous study showed that the number of
latent variables was between 1 and 15 in the study. There-
fore, the number of latent variables used as the input of the
PLS was set from 1 to 15, and the best number of latent
variables was determined according to the smallest
RMSEC. The changed RMSEC with the number of latent
variables is shown in Fig. 3. It shows that when the number
of latent variables was 9, the RMSEC was the smallest
(0.847). So, the optimal number of latent variables was 9
in this study. More information about latent variables can be
found elsewhere (Wold et al. 2001).

In the UVE-PLS process, the calculated contribution
coefficient k in Eq. (5) was 0.99. According to the stabil-
ity value C of random variables in Eq. (4), the cutoff
threshold in Eq. (5) was calculated as 15.84. Figure 4
shows the stability of each variable in the dielectric spec-
tra for apple SSC prediction by UVE-PLS with nine latent
variables. The input dielectric variables were at the left of
the vertical line, while random variables were at the right
side. The cutoff threshold of UVE-PLS is indicated by
dashed lines. The dielectric variables whose stability is
within the cutoff lines should be treated as uninformative
and eliminated. Finally, 29 dielectric variables, including
15 for ε ' and 14 for ε ' ', were selected by UVE-PLS from
the full dielectric spectra of ε ' and ε ' '. The number of
selected dielectric variables was 28.4 % of the 102 vari-
ables in the full spectra. Figure 5 shows the 29 dielectric
variables selected by UVE-PLS. The curves show the
original dielectric spectra of one sample in the calibration
set, and the vertical lines represent selected variables. The
selected variables were used to establish ANN models.
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Fig. 2 Frequency dependence of ε ' (a) and ε ' ' (b) of three different
varieties of apples

Table 1 Statistics for the SSC values of apple samples determined by SPXY

Samples Calibration set Prediction set

Num Max/°Bx Min/°Bx Mean±SD/°Bx Num Max/°Bx Min/°Bx Mean±SD/°Bx

Fuji 40 21.6 14.5 18.2±1.4 a 20 20.3 16.9 18.5±1.2 a

Pink 40 16.3 13.9 15.2±0.6 b 20 16.2 14.3 15.2±0.5 b

Rome 26 16.5 13.1 14.6±0.9 c 14 15.6 13.1 14.5±0.7 c

A column followed by different letters are significantly different at 5 % probability level

SD standardized form
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Selection of Characteristic Variables by SPA

The characteristic variables selection process by SPAwas im-
plemented by comparing the RMSEC values under different
variable numbers from 1 to 25. Figure 6 shows that the
RMSEC decreased with the increase of number of variables.
When the RMSEC did not decrease significantly, the number
of variables could be determined. In this study, 11 character-
istic variables were determined. At this point, RMSEC=
0.850. The characteristic variables selected by SPA are shown
in Table 3. One ε ' variable and 10 ε ' ' variables at different
frequencies were selected as characteristic variables. The
number of selected dielectric variables was 10.8 % of the
102 variables in the full spectra.

SSC Determination Models

SSC Determination Models Developed by GRNN

The best smoothing factor (σ) for GRNN in Eq. (6) was con-
firmed by modeling repeatedly when σ was set from 0.1 to 2.
In this study, smoothing factors of FF, PCA, UVE-PLS, and
SPA were 0.5, 0.1, 0.2, and 0.2, respectively (Table 4). This
indicates that at these smoothing factors, the performances of
networks were best.

Table 5 shows the calibration and prediction performances
of the GRNN models developed for determining apple SSC
when FF, selected characteristic variables by PCA, UVE-PLS,

and SPA were used in modeling, respectively. The results
show that when the selected 29 characteristic variables by
UVE-PLS were used as input data, the GRNN-UVE-PLS
model had the highest Rc (0.952) and Rp (0.880) and the
smallest RMSEC (0.565) and RMSEP (1.243). This means
that the calibration and prediction ability of the GRNN-
UVE-PLS was the best. The GRNN model based on PCA
had the lowest Rc (0.899) and a higher RMSEC (0.807), but
a better prediction ability with Rp of 0.860 and RMSEP of
1.358. Although GRNN-SPA model had higher Rc (0.902)
and Rp (0.867), it had the highest RMSEC and RMSEP. That
is GRNN-SPA had the highest calibration and prediction er-
rors. GRNN-FF model, which had a higher Rc (0.916) and a
lower RMSEC (0.807), had the lowest Rp (0.839) and higher
RMSEP (1.428). That means that the stability of GRNN-FF
was not good. Moreover, all 102 variables used in the GRNN-
FF model cause the model to be more complicated than the
others.

SSC Determination Models Developed by SVM

Kernel function and optimal model parameters are first needed
before developing the SVM calibration models. Since RBF
can deal with nonlinear relationships between frequency spec-
tra and target variables better than other functions, RBF was
used as the kernel function for SVM in this study. Several
studies have shown that the penalty factor c, which is a key

Table 2 The contribution rates and accumulative contribution rates of the first seven PCs

The number of principal components PC1 PC2 PC3 PC4 PC5 PC6 PC7

Contribution rate (%) 99.588 0.314 0.081 0.011 0.003 0.001 0.001

Accumulative contribution rate (%) 99.588 99.902 99.983 99.994 99.997 99.998 99.999
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Fig. 3 Changed RMSEC with number of latent variables in UVE-PLS.
Filled square represents the point at which the number of latent variables
was finally selected
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Fig. 4 Stability of each dielectric variable in the dielectric spectra for
apple SSC predication by UVE-PLS with nine latent variables. Two
horizontal dashed lines show the lower and upper cutoff
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regularization parameter of the SVM model, and parameter g
of the RBF in Eq. (9) play essential roles in establishing SVM
models. Detailed information about c can be found elsewhere
(Cherkassky and Ma 2004).

In this study, fivefold cross-validation was applied to select
c (range set from 2−6 to 26) and g (range set from 2−6 to 26)
with an increment of 20.5 for the SVM. Grid-Search method
was employed to search for the optimal parameters. For each
combination of c and g, SVM model was established and the
RMSEC was calculated. The best values of c and g were
determined by the smallest RMSEC in all combinations of c
and g. Detailed processing for parameter selection is discussed
elsewhere (Chang and Lin 2011; Cheng et al. 2013). Figure 7
summarizes the process of selecting parameters. The deter-
mined values of c and g at different variable selection methods
are listed in Table 4.

The calibration and prediction performances of developed
SVM models for determining apple SSC when FF, selected
characteristic variables by PCA, UVE-PLS, and SPA were
used in modeling are shown in Table 5. When the selected
11 characteristic variables by SPA were used to establish the
SVM model, the SVM-SPA model had the highest Rc (0.926)
and the lowest RMSEC (0.676) in the calibration set, but
lower Rp (0.796) and higher RMSEP (1.684) in the prediction
set. When the selected 29 characteristic variables selected by
UVE-PLS were used as input data for SVM modeling, the
SVM-UVE-PLS model had the highest Rp (0.871), lower
RMSEP (1.484), higher Rc (0.907), and lower RMSEC
(0.737). SVM-FF model had better calibration and prediction
performances. SVM-PCA had the poorest SSC prediction per-
formance among four SVM models since it had the lowest Rc
(0.860) and Rp (0.775) and the highest RMSEC (0.939) and
RMSEP (1.764). Generally, SVM-UVE-PLS has good poten-
tial in predicting SSC for apples in this study.

SSC Determination Models Developed by ELM

The excitation function of ELM was the “sig.” function. The
number of hidden layer nodes was obtained by a trial and error
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Fig. 5 Plots of selected 29 dielectric variables, including 15 dielectric
constants (a) and 14 loss factors (b). Curves show the original dielectric
spectra of sample one in calibration set. Vertical lines represent selected
variables

0 2 4 6 8 10 12 14 16 18 20

0.8

1.0

1.2

1.4

1.6

1.8

R
M

S
E

C

Number of variables included in model

Fig. 6 Changed RMSEC with the number of variables included in SPA.
Filled square represents the point at which the final number of variables
was selected

Table 3 The 11 dielectric variables selected by SPA

Number Frequency
(MHz)

Dielectric
properties

Number Frequency
(MHz)

Dielectric
properties

1 32.099 ε' 7 585.501 ε''

2 19.097 ε'' 8 897.380 ε''

3 23.674 ε'' 9 1362.534 ε''

4 134.164 ε'' 10 1654.179 ε''

5 430.659 ε'' 11 1800.000 ε''

6 533.887 ε''
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method. The methods is setting the number of hidden layer
nodes from 1 to 100 at first, then increasing the number of
hidden layer nodes by 1 from 1 gradually, next, deciding the
optimal number of nodes based on the lowest RMSEP (Chen
et al. 2012). Since the initial weight value of ELM was ran-
dom, the modeling results were unstable. Therefore, a model
repeated 1000 times was employed. According to the average
results of RMSEP, the number of hidden layer nodes was
decided reasonably. The average RMSEPs in 1000 times rep-
etition under different numbers of hidden layer nodes for ELM
with different characteristic variable selection methods of FF,
PCA, UVE-PLS, and SPA are shown in Fig. 8. Based on the
smallest RMSEP, the number of hidden layer nodes for ELM
with FF, PCA, UVE-PLS, and SPA were 30, 18, 32, and 27,
respectively. All determined parameters of the models under
different characteristic variables selection methods are listed
in Table 4.

The calibration and prediction performances of developed
ELM models for determining apple SSC with different char-
acteristic variables selection methods are summarized in Ta-
ble 5. Table 5 shows that the model of ELM-UVE-PLS had
the highest Rc (0.910), lowest RMSEC (0.789), higher Rp

(0.860), and lower RMSEP (0.992). The ELM-SPA model
had the highest Rp (0.908), the lowest RMSEP (0.822), and

better calibration performance with Rc of 0.898 and RMSEC
of 0.840. ELM-FF model had better calibration and prediction
performances than that of ELM-PCA, which had the worst
calibration and prediction performances among the four
ELM models since it had the lowest Rc (0.747) and Rp

(0.766) and the highest RMSEC (1.270) and RMSEP (1.248).

Comprehensive Comparison of SSC Determination
Performance for Different Models

To determine the model with the best comprehensive perfor-
mance for SSC determination, Rc+Rp, |Rc−Rp|, RMSEC+
RMSEP, and response time, when a computer with the fre-
quency of 1.8 GHz and internal memory of 4 GB was used,
are also listed in Table 5. The model with the highest Rc+Rp,
the smallest |Rc−Rp| and RMSEC+RMSEP, and the least re-
sponse time is regarded as the best one. Table 5 shows that
GRNN-UVE-PLS had the highest Rc+Rp (1.832) among 12
models. However, it had higher |Rc−Rp|. It indicates that
GRNN-UVE-PLS had bad stability. Moreover, its response
time was higher (3.903 s). ELM-SPA had the smallest |Rc-
Rp| (0.010) and RMSEC+RMSEP (1.662). So, ELM-SPA
was the most stable and had the lowest prediction error. More-
over, ELM-SPA had higher Rc+Rp (1.806) and less response

Table 4 Modeling parameters of GRNN, SVM, and ELM

Pretreatment methods GRNN SVM ELM

σ c g Input layer nodes Hidden layer nodes Output layer nodes

FF 0.5 1 0.5 102 30 1

PCA 0.1 0.177 16 4 18 1

UVE-PLS 0.2 16 0.088 29 32 1

SPA 0.2 0.707 2.828 11 27 1

Table 5 Comparison of determination results for SSC of apples of three varieties by GRNN, SVM, and ELM models

Modeling
method

Characteristic variables
selection method

Calibration set Predication set RMSEC+
RMSEP (°Bx)

Response
time (s)

Rc RMSEC
(°Bx)

Rp RMSEP
(°Bx)

Rc+Rp |Rc−Rp|

GRNN FF 0.916 0.749 0.839 1.428 1.755 0.077 2.177 5.001

PCA 0.899 0.807 0.860 1.358 1.759 0.039 2.165 2.012

UVE-PLS 0.952 0.565 0.880 1.243 1.832 0.072 1.808 3.903

SPA 0.902 0.841 0.867 1.529 1.769 0.035 2.370 2.589

SVM FF 0.916 0.705 0.850 1.238 1.766 0.066 1.943 3.246

PCA 0.860 0.939 0.775 1.764 1.635 0.085 2.703 2.167

UVE-PLS 0.907 0.737 0.871 1.484 1.778 0.036 2.221 2.159

SPA 0.926 0.676 0.796 1.684 1.722 0.130 2.360 1.670

ELM FF 0.872 0.903 0.831 1.083 1.703 0.041 1.986 1.598

PCA 0.747 1.270 0.766 1.248 1.513 0.019 2.518 1.298

UVE-PLS 0.910 0.789 0.860 0.992 1.770 0.050 1.781 1.305

SPA 0.898 0.840 0.908 0.822 1.806 0.010 1.662 1.396
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time (1.396). In addition, 11 variables used in ELM-SPAwere
less than the 29 variables used in GRNN-UVE-PLS. There-
fore, the ELM-SPA model was regarded as the best in the
determination of SSC of apples for the three varieties. The
model was also found to be the best one in predicting SSC
of pear by Fourier transform near infrared spectroscopy (Jiang
and Zhu 2013). The calibration and prediction results for the
ELM-SPA model are shown in Fig. 9.

Investigating the process speed of all models, ELM,
in contrast to GRNN and SVM, had less response time.
That means that ELM can avoid some difficulties faced
by gradient-based learning methods (Cao et al. 2012;
Zhu et al. 2005). Furthermore, the stability of ELM
was better than that of GRNN and ELM since most
ELM models had lower |Rc−Rp| than GRNN and SVM
models.

Comparison with Reported Data

Vis/NIR spectroscopy technology or hyperspectral imaging
technology combined with chemometric methods and ANN
have been widely used to predict apple SSC. For example,
based on Vis/NIR spectroscopy technology, SSC of ‘Golden
Delicious’ and ‘Stark RedDelicious’ apples were predicted by
PLS models with a correlation coefficient of cross-validation
and root-mean-square error of 0.85 and 0.78, and 0.82 and
0.12, respectively (Beghi et al. 2013). PLS models were also
built to predict SSC of ‘Red Fuji’ (Fan et al. 2009), ‘Golden
Delicious’ (Giovanelli et al. 2014), and ‘Elshof’ (Moller et al.
2013) apples with Rp

2 and RMSEP of 0.98 and 0.29, 0.89 and
0.40, and 0.80 and 0.70, respectively. By using hyperspectral
imaging technology, multiple linear regression models were
built for ‘Fuji’ apples with Rp

2 and RMSEP of 0.95 and 0.31
(Huang et al. 2013a) and for ‘Golden Delicious’ apples with
Rp of 0.88 (Peng and Lu 2008). PLS models with Rp

2 of 0.66–

(a) FF, the best c is 1, best g is 0.5, RMSEC is 0.008. 

(b) PCA, the best c is 0.177, best g is 16, RMSEC is 0.026. 

(c) UVE-PLS, the best c is 16, best g is 0.088, RMSEC is 0.010. 

(d) SPA, the best c is 0.707, best g is 2.828, RMSEC is 0.008. 

Fig. 7 The grid search process of
penalty factor (c) and parameter g
combination of three selection
methods for SVM by fivefold
cross validation. Filled circle
indicates the optimal c and g for
each model
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Fig. 8 The average RMSEP under different numbers of hidden layer
nodes for ELM with characteristic variable selection methods of FF,
PCA, UVE-PLS, and SPA
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0.88 were built for predicting SSC of ‘Golden Delicious’,
‘Jonagold’, and ‘Delicious’ apples (Mendoza et al. 2011),
and with Rp of 0.82 and RMSEP of 0.78 for ‘Golden Deli-
cious’ apples (Huang and Lu 2010).

Compared with published data on SSC prediction for
apples using Vis/NIR spectroscopy and hyperspectral
imaging technologies, we found that although the best
predictive performances of the SSC model (Rc=0.898,
Rp=0.908, RMSEC=0.840, RMSEP=0.822) established
here with dielectric spectra were poorer than some re-
ported for intact apples (Fan et al. 2009; Giovanelli
et al. 2014; Moller et al. 2013; Huang et al. 2013a),
they were better than some other reported values (Beghi
et al. 2013; Peng and Lu 2008; Mendoza et al. 2011;
Huang and Lu 2010). Furthermore, the established
models to predict SSC from Vis/NIR or hyperspectral

data were established with a single apple variety in the-
se published reports, but models built from dielectric
spectra data in our study involved three apple varieties.
The more varieties used in modeling, the more difficult
it is to improve model performance, but the models
have wide range in application.

On the other hand, when compared with previous
works on studying linear relationship between SSC
and dielectric properties of honeydew melons (Nelson
et al. 2006; Guo et al. 2008), apples (Guo et al.
2011), watermelons (Nelson et al. 2007), and peaches
(Guo and Chen 2010), it was found that the nonlinear
models achieved here had much better predictive perfor-
mance than linear models developed earlier. Therefore,
the study indicates that dielectric spectra technology
may be applied to predict soluble solids content of in-
tact apples with nonlinear models, similar to those of
Vis/NIR spectroscopy and hyperspectral imaging tech-
nologies by using ANN and chemometric methods.

Conclusions

Dielectric spectroscopy combined with chemometric
methods of PCA, UVE-PLS, and SPA and ANN models
of GRNN, SVM, and ELM was successfully utilized for
the determination of soluble solids content of three va-
rieties of apples. Four, 29, and 11 characteristic vari-
ables were selected from original 102 variables of di-
electric constants and dielectric loss factors at 51 dis-
crete frequencies from 10 to 1800 MHz by PCA, UVE-
PLS, and SPA, respectively. PCA was a more powerful
data compression method than UVE-PLS and SPA, but
the developed models based on PCA performed poorer
than based on UVE-PLS and SPA. ELM models had
less response time and better stability than GRNN and
SVM models. ELM-SPA model was regarded as the
best one in predicting soluble solids content of the three
varieties of apples in consideration of calibration and
prediction performances, stability, and response speed.
The study indicates that dielectric spectra combined
with artificial neural network and chemometric methods
can be successfully utilized for the determination of
soluble solids content of apples of several varieties. It
also offers some useful technologies for developing
nondestructive sensors for fruit soluble solids content
based on dielectric spectra. In addition, in the future,
more samples and other characteristic variable selection
methods and modeling methods may need to be in-
volved to further assess whether the ELM-SPA model
is really better than other models for prediction of sol-
uble solids content of multiple varieties of apples.
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Fig. 9 Measured SSC vs. predicted values in the calibration set (a) and
the prediction set (b) by the ELM-UVE-PLS model
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