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Abstract The dielectric properties of 160 apples of three
varieties were obtained from 10 to 1,800 MHz. Based on the
Kennard-Stone algorithm, 106 apples were selected for cali-
bration set and the remaining 54 apples were used for valida-
tion set. Principal component analysis (PCA) and successive
projections algorithm (SPA)were used to extract characteristic
variables from original full dielectric spectra (FS). The learn-
ing vector quantization (LVQ) network, support vector ma-
chine (SVM), and extreme learning machine (ELM) modeling
algorithms were applied to build models to identify the vari-
eties of apples. Results showed that the first three principal
components, and two dielectric constants and ten loss factors
were selected as characteristic variables by PCA and SPA,
respectively. SPA-ELM and PCA-ELM, whose total average
accuracy reached 99.5 and 99.0 %, respectively, had good
potential in identifying apple varieties. The study indicates
that the dielectric spectra with chemometrics are promising for
identifying apple varieties nondestructively and accurately.

Keywords Apple . Dielectric properties . Learning vector
quantization network . Support vector machine . Extreme
learningmachine

Introduction

Apples, as a widely grown crop, have been appreciated by
consumers because of their nutritional and delicious charac-
teristics (Giovanelli et al. 2014). Apples are an important
agricultural commodity in the global market of fresh products.
The quality for an apple depends on its external characteris-
tics, such as color, size, and surface texture, and internal
parameters, such as sweetness, acidity, firmness, tissue tex-
ture, ascorbic acid, and polyphenolic compounds (Wojdyło
et al. 2008). These characteristics, especially internal param-
eters, are similar within a variety. However, each variety has
its special characteristics and flavor, which results in different
prices and preferences by different people.

Generally, more than one apple variety is planted in an
apple orchard, and several varieties are sold by sellers at one
time. Therefore, different apple varieties can be easily mixed
during harvesting and marketing. A means for distinguishing
apple varieties is needed by apple sellers. Therefore, some
reliable technique is needed to discriminate varieties of apples
rapidly and nondestructively.

Dielectric properties as a useful parameter for materials
have been noted increasingly by researchers (Feng et al.
2002; Guo et al. 2011b; Ndife et al. 1998; Nelson et al.
1953). The dielectric properties of usual interest in most
applications are the dielectric constant ε ′ and loss factor ε ′ ′,
the real part and imaginary part, respectively, of the relative

complex permittivity, ε� ¼ ε0−jε00 j ¼ ffiffiffiffiffiffi
−1

p� �
. The dielectric

constant indicates the ability of a material to store electric
energy in the material, and the loss factor is associated with
energy dissipation or conversion from electric energy to heat
energy. It has been shown that the dielectric properties of
agricultural products and food materials are linked to their
internal features or composition, such as for grain (Nelson
et al. 1953), pomegranate (Castro-Giráldez et al. 2013), hon-
eydew melons (Guo et al. 2007b), and apples (Guo et al.
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2011a). Previous studies showed that the dielectric properties
had potential in predicting sweetness of apples and nectarines
(Guo et al. 2013; Shang et al. 2013). If not only the main
internal qualities but also the varieties can be nondestructively
identified by using dielectric properties, a more efficient fruit
quality and variety classification system might be developed
in the future. However, to our knowledge, no research has
been reported on determining varieties of fruits based on
dielectric properties.

The artificial neural network (ANN), as a classification
approach, has been extensively applied to establish variety
identification models and has obtained good classification
results by using visible/near-infrared (Vis/NIR) spectra (Bao
et al. 2014; Liu et al. 2012) or hyperspectra (Chen et al. 2013).
However, the precision of ANN models is usually influenced
by data overlap and noise in original data or other unstable
factors. To overcome these problems, chemometric methods,
such as principal component analysis (PCA), the uninforma-
tive variables elimination method based on partial least
squares (PLS-UVE), or the successive projection algorithm
(SPA), are usually adopted to extract indispensable and useful
information, usually called characteristic variables, from orig-
inal data. Several studies have shown that models established
by combining ANN approaches and chemometric methods
together achieved better results than classical linear discrimi-
nant analysis (Cheng et al. 2014; Grunert et al. 2013).

To assess the potential of dielectric spectra in
distinguishing varieties in fruits, dielectric properties of three
varieties of apples (‘Fuji’, ‘Red Rome’, and ‘Pink Lady’) were
obtained over the frequency range from 10 to 1,800 MHz.
ANN analysis models, including the learning vector quanti-
zation (LVQ) network, support vector machine (SVM), and
extreme learning machine (ELM), combined with chemomet-
ric approaches, such as PCA and SPA, were used to establish
apple variety identification models. The study was expected to
offer a new approach and useful information in applying
dielectric spectra and in fruit variety classification.

Materials and Methods

Apples

Fresh apples, Malus domestica Borkh., of three varieties,
‘Fuji’, ‘Pink Lady’, and ‘Red Rome’, were obtained from
refrigerated apple storage rooms in north Georgia within
2 weeks of harvest for the study. Measurements were taken
initially and at 2-week intervals during 10 weeks of storage.
At each measurement time, ten apples of each variety were
measured. Difficulty in expressing juice from the ‘Red Rome’
apples resulted in suspension of the measurements on that
cultivar after the sixth week of storage. Therefore, 160 apples
were used in the work, including 60 ‘Fuji’, 60 ‘Pink lady’, and

40 ‘Red Rome’ apples. The detailed information on apple
samples was described previously (Guo et al. 2007a). The
mean values and standard deviations of moisture content and
firmness of pulp and the soluble solids content and pH of the
juice of the three varieties of apples used in the study are listed
in Table 1.

Dielectric Properties and Internal Qualities Measurement

A Hewlett-Packard (Palo Alto, CA) 4291A impedance/
material analyzer, a Hewlett-Packard 85070B open-ended
coaxial-line probe, a computer, and a laboratory jack consti-
tuted the measurement system for determining the dielectric
properties in this study. The setup of the dielectric properties
measurement system is shown in Fig. 1. Agilent Technologies
85070D dielectric probe kit software was applied to calculate
the permittivities (ε ′ and ε ′ ′) from the reflection coefficient of
the material in contact with the active tip of the coaxial-line
probe. The frequency range of the 4291A impedance/material
analyzer was from 1 to 1,800MHz. Since the dielectric spectra
contained much noise below 10 MHz, 10 MHz was set as the
lower frequency limit in the study. The permittivity measure-
ments were set at 51 discrete frequencies on a logarithmic
scale from 10 to 1,800 MHz and were done with the probe in
contact with the surface of the intact apples firmly in the
equatorial region at four points about 90° apart around the
perimeter of the fruit.

In addition to dielectric properties, other internal qualities,
such as firmness and moisture content of pulp, soluble solids
content, and pH value of juice, were obtained. Pulp firmness
was measured with a Wagner (Wagner Instruments, Green-
wich, CT) Fruit Test FT Series Fruit Tester equipped with an
11-mm-diameter penetrometer tip and with the Fruit Test
instrument in a motor-driven penetrometer mount that ad-
vanced the tip at a constant speed (1.33 mm/s) into the fruit.
Moisture content, wet basis, of pulp was determined by
drying triplicate samples of about 10–14 g in disposable
57-mm aluminum weighing dishes that were placed in a
forced-air drying oven for 24 h at 70 °C. Soluble solids
content of juice was determined with an Atago Palette Series
Model PR101α digital refractometer (Atago Co. Ltd., To-
kyo, Japan). The pH values of juice were determined with a
Sentron pH meter (Model 2001, Integrated Sensor Technol-
ogy, Inc., Gig Harbor, WA). Averages of 3 or 4 repeated
measurements for permittivities, firmness, soluble solids
content, moisture content, and pH values of each sample
were used.

The detailed calibration procedures for the open-ended
coaxial-line probe and the impedance/material analyzer, di-
electric properties, and internal qualities measurements were
described previously (Guo et al. 2007a). All experiments were
done at room temperature (24±1 °C).
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Dielectric Spectra

For each sample, there were 51 values of dielectric constants
and another 51 values of dielectric loss factors. From 10 to
1,800 MHz, all the values were numbered. The obtained ε ′
was numbered from 1 to 51 and ε ′ ′ was numbered from 52 to
102. Therefore, each sample contained 102 variables.

Sample Division Method

Rational division of the sample sets is important to improve the
validation accuracy. The Kennard-Stone (KS) algorithm, for
selecting representative calibration samples from all samples,
is a classic method used in qualitative analysis (Galvao et al.
2005). The main process of the KS algorithm is as follows:

Step 1: Calculate the Euclidean distance between every two
samples of all samples. Euclidean distance dx(p,q) is
calculated by Eq. 1.

dx p; qð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
j¼1

J

xp jð Þ−xq jð Þ� �2vuut ; p; q∈ 1;N½ � ð1Þ

where xp(j) and xq(j) are the instrumental re-
sponse at the jth variable of samples p and q,

respectively. J refers to the number of all variables,
and N refers to the number of all samples. In this
study, J and N are 102 and 160, respectively. The
samples with the largest Euclidean distance are
chosen as the first and second samples in the
calibration set.

Step 2: Calculate every remaining sample’s Euclidean
distance to the selected samples, and the min-
imum distance was selected. Until every re-
maining sample’s distance is calculated, the
sample with the largest minimum Euclidean
distance is chosen as the next sample in the
calibration set.

Step 3: Repeat step 2 until the set sample number of the
calibration set is reached.

Through this algorithm, a calibration set including utmost
main information from original samples is decided. Remain-
ing samples are used as the validation set to assess established
models.

In this study, 160 apples were divided into calibration and
validation sets with the KS algorithm. The ratio of samples in
the calibration and validation sets was 2:1. Therefore, the
calibration set consisted of 40 ‘Fuji’, 40 ‘Pink Lady’, and 26
‘Red Rome’ apples, and the validation set had 20 ‘Fuji’, 20
‘Pink Lady’, and 14 ‘Red Rome’ apples.

Table 1 The mean values and standard deviations of internal qualities of the three varieties of apples used in the study

Varieties Moisture content (% wet basis) Firmness (kg/cm2) Soluble solids content (%) pH

Fuji 80.48±1.31 a * 7.52±1.39 a 18.32±1.32 a 3.64±0.22 a

Pink Lady 83.21±0.69 b 6.69±1.13 b 15.18±0.57 b 3.41±0.12 b

Red Rome 83.83±0.88 b 4.26±0.76 c 14.57±0.84 c 3.45±0.18 b

* means within a column followed by different letters are significantly different at the 5 % probability level

Coaxial-line probe

Impedance/material

analyzer

Laboratory jack

Fig. 1 The setup of the dielectric
property measurement system
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Characteristic Variable Selection Methods

Principal Component Analysis

PCA is a useful statistical method for data reduction (Huang
et al. 2014). Based on the contribution rate applied by PCA,
the number of principal components can be decided. There-
fore, a reduced data set which contains the principal message
of the original data can be obtained to replace the old one. It
has been reported that the models established with data proc-
essed by PCA were superior to those established by original
data (Li et al. 2009).

Successive Projections Algorithm

SPA is a forward-loop variable selection algorithm which can
effectively solve collinearity problems by selecting variables
whose information is minimally redundant (Pontes et al. 2005;
Ye et al. 2008). With SPA, the first variable of the spectral
variables is used as an initial variable x0 and another new
variable is incorporated in each orthogonalization iteration,
until the preset variable number is reached. At the next itera-
tion, the second variable of the spectral variables is chosen as
the initial variable x1, until all variables of the spectra are
chosen as the initial one. More detailed processing of SPA
can be found in other publications (Araujo et al. 2001; Pontes
et al. 2005).

In a classification situation, the number of characteristic
variables selected by SPA was determined by the minimum
of the average risk G under different variable numbers
(Pontes et al. 2011). G is calculated in the validation by
Eq. 2.

G ¼ 1

Kv

X
k¼1

Kv

gk ð2Þ

where Kv is the number of validation samples. gk is the risk of
misclassification of the kth validation object, and it is defined
as Eq. 3.

gk ¼
r2 xk ;μILð Þ

minIj≠ILr
2 xk ;μIj

� � ð3Þ

where the numerator r2(xk,μIL) is the squared Mahalanobis
distance between xk (the kth sample in class index IL) and μIL

(the mean of its true class). Both xk and μIL are row vectors.
μIj is the mean of the Ij variety (j=1, 2, 3) in the calibration set.
More detailed information can be found elsewhere (Pontes
et al. 2011).

Modeling Methods

Learning Vector Quantization

The LVQ network is a mostly used supervised learning algo-
rithm for classification based on a self-organizing map
(Kohonen 1982; Sun et al. 2011). The main work of LVQ is
to confirm the decision boundaries between neighboring cate-
gories in order to minimize misclassifications (Paola and
Schowengerdt 1995). An LVQ network has three layers: an
input layer, a competitive layer which learns and performs the
classification, and a linear output layer (Liu et al. 2010). There
exist five versions of the LVQ training algorithm, i.e., LVQ1,
LVQ2.1, LVQ3, OLVQ1, and combined LVQ (CLVQ) (Vakil-
Baghmisheh and Pavešić 2003). In this study, LVQ1 was ap-
plied to establish the classification models. More detailed infor-
mation can be found in former literature (Bashar et al. 2005).

Support Vector Machine

As a powerful tool, the SVM algorithm has been widely
applied in many analytical problems in many fields. Its theory
for classification and regression has been described in detail in
several papers (Brereton and Lloyd 2010; Luts et al. 2010).
The main thought of SVM is to represent the original category
of samples in a higher dimensional space, which is usually
called feature space. A complex nonlinear mapping of the
variables to a feature space can be realized by SVM
(Gómez-Carracedo et al. 2012; Laurentino Alves and Poppi
2013). Based on the kernel functions, the variables are
expressed in the feature space and are distinguished more
easily than those in the original space. Classification problems
can be described as Eq. 4:

f xð Þ ¼ sgn
X
s¼1

Ns

αiyiK x; xið Þ þ b

 !
ð4Þ

where Ns is the number of support vectors, αi(0≤αi≤c) is the
ith Lagrange multiplier, the constant c is defined as a penaliz-
ing factor, which determines the trade-off between error min-
imization and margin maximization, xi is the ith training
vector, yi is the classification label of xi, K(x,xi) is the kernel
function, and b is the bias.

It has been proven that radial basis function (RBF) is more
effective than other kernel functions (Kuo et al. 2014;
Prashanth et al. 2014). RBF is defined as follows:

K x; xið Þ ¼ exp − x−xik k2= 2g2
� �� �

ð5Þ

where ‖x−xi‖ is the distance from the ith input vector to
threshold vector and g is the width vector (a kernel parameter
of RBF).
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Therefore, selecting c and g is the key step in SVMmodel-
ing. In this study, the Libsvm (version 2.81) (Chang and Lin
2011) package was adopted to establish SVM models.

Extreme Learning Machine

ELM is a single-hidden-layer feed-forward neural network
(SLFN) with a perfect generalization performance. It has been
widely applied in classification by using hyperspectra (Bazi
et al. 2014) or in determination of internal qualities of fruits by
using visible/near-infrared spectra (Jiang and Zhu 2013;
Ouyang et al. 2013).

Some studies (Ouyang et al. 2013; Zhu et al. 2005) have
shown that the generalization performance of ELM is better
than that of the traditional learning models (such as back
propagation network). Another advantage is that ELM can
overcome some difficulties (such as learning rate and learning
epochs) which are usually faced by classical learning models.
However, selecting the number of hidden layer nodes is an
essential problem to be solved in establishing ELM models.
After randomly choosing and fixing the weights between
input neurons and hidden neurons, an ELM model which
identifies the varieties of samples can be established. More
detailed theories of ELM can be found in other references
(Huang et al. 2006, 2012).

Evaluation of Identification Performance

The identification performance of a classification framework
is always evaluated by three different metrics: recall, preci-
sion, or accuracy (Yousef and Moghadam Charkari 2013).
Accuracy has more advantages than recall or precision be-
cause it considers true positive (TP), true negative (TN), false
positive (FP), and false negative (FN) simultaneously. It can
be calculated as follows:

Accuracy ¼ number of TPsþ TNsð Þ
number of TPsþ TNsþ FPsþ FNsð Þ � 100%

ð6Þ

where TP is the event that a positive sample is classified as a
positive example, TN is the event that a negative sample is
classified as a negative example, FP is the event that a nega-
tive sample is classified as a positive example, and FN is the
event that a positive sample is classified as a negative exam-
ple. The higher the accuracy, the better the model.

Software

Besides the above-described software 85070D for dielectric
spectra acquisition, SPSS 17.0 (SPSS Inc., Chicago, IL) was

used to do analysis of variance (ANOVA) on the internal
qualities of the three varieties of apples used, and MATLAB
R2012a (MathWorks, Natick, MA) was applied to establish
classification models in this study.

Results and Discussion

The Internal Properties of the Three Varieties of Apples

Table 1 shows that ‘Fuji’ apples had the highest firmness,
soluble solids content, and pH values and lowest moisture
content. ‘Red Rome’ had the lowest values for firmness and
soluble solids content. Several studies had reported that the
moisture content of fruits had a negative linear relationship
with the soluble solids content (Guo et al. 2007a, 2011a;
Nelson et al. 2007). Similar results were also noted here.

The results of ANOVA on the internal quality parameters
of the three varieties showed that the moisture content and pH
value of ‘Fuji’ apples had a significant difference with those of
‘Pink Lady’ and ‘Red Rome’ apples at a significance level of
5%, but they had no significant difference for ‘Pink Lady’ and
‘Red Rome’ apples. The firmness and soluble solids content
of the three varieties all had a significant difference with each
other at 5 % probability level.

The Dielectric Properties of the Three Varieties of Apples

The averages of the dielectric constants and loss factors, with
standard deviations, of the three varieties of apples over the
frequency range from 10 to 1,800 MHz are shown in Fig. 2.
The dependence of ε ′ and ε ′ ′ on frequency is similar for the
three varieties. The ε ′ value decreased with increasing fre-
quency over the whole frequency range. However, an over-
riding dielectric relaxation behavior was observed for ε ′ ′. The
behavior may involve bound water and Maxwell-Wagner
relaxations (Guo et al. 2007a).

Selection of Characteristic Variables

Selection of Characteristic Variables by PCA

Table 2 lists the contribution rate and accumulative contribu-
tion rate of the first seven PCs. It shows that the first principal
component (PC1) offers the main contribution (64.84 %), and
the second principal component (PC2) contributed 26.24 %.
Generally, when the PCs have more than 85 % accumulative
contribution of the original dataset, these PCs can be used to
replace the original one (He et al. 2006). In this study, the first
two PCs contributed 91.07 %, more than 85 %, of the whole
contribution, but the validation capability was not good when
the first two PCs were used to identify apple varieties. The
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scores plot of PC1, PC2, and PC3 in three-dimensional space
was examined for clustering results relating to the three varie-
ties, ‘Fuji’, ‘Pink Lady’, and ‘Red Rome’ (Fig. 3). As shown in
Fig. 3, ‘Fuji’ and ‘Pink Lady’ can be separated easily, but it is
difficult to separate ‘Red Rome’ from ‘Fuji’. This means that it
is hard to separate these three varieties of apples by linear
discriminant analysis. Nonlinear discriminant methods need
to be developed. In the study, the first three PCs, whose
accumulative rate higher than 98.04%, were adopted and were
considered as the inputs for the LVQ, SVM, and ELMmodels.

Selection of Characteristic Variables by SPA

The change in G value with the number of variables selected
by SPA is shown in Fig. 4, where the G value decreases with
the increasing number of variables. Since more variables will
slow down the computation speed, usually the number of
variables is determined when theG value has a small decrease
with increasing numbers of variables. In this study, when the
decrease in G was less than 0.4, the smallest number, 12, was
chosen. The selected 12 characteristic variables, including two
variables of ε′ and ten variables of ε″ at different frequencies,
are listed in Table 3. The amount of dielectric variables select-
ed by SPAwas 11.8% of the 102 variables in the full dielectric
spectra.

Variety Identification Models

Models Developed by LVQ

To achieve the best results for the LVQ models, all training
epochs were set as 500. Furthermore, the learning rate and
goal of the LVQ model were set as 0.1 and 0.05, respectively.
An essential parameter of the LVQ is the number of hidden
layer nodes, and it is usually selected by trial and error. The
range of the number of hidden layer nodes was set from 1 to
30 at first and then increased 1 by 1 at a time, and the optimal
number of nodes was confirmed based on the highest variety
identification accuracy of the calibration set. The identifica-
tion accuracy of the calibration set changed with the number

Fig. 2 Frequency dependence of ε ′ (a) and ε ′ ′ (b) of the three different
varieties of apples

Table 2 The contribution rates
and accumulative contribution
rates of the first seven PCs

The number of principal components PC1 PC2 PC3 PC4 PC5 PC6 PC7

Contribution rate (%) 64.84 26.24 6.97 1.31 0.25 0.21 0.05

Accumulative contribution rate (%) 64.84 91.07 98.04 99.35 99.60 99.82 99.87

Fig. 3 Scatter plots by PC1 × PC2 × PC3 of the three varieties of apples

Food Anal. Methods (2015) 8:1042–1052 1047



of hidden layer nodes as shown in Fig. 5. The smallest
numbers, where higher or highestaccuracies were obtained,
were chosen. The numbers of hidden layer nodes for full
dielectric spectra (FS)-LVQ, PCA-LVQ, and SPA-LVQ were
10, 11, and 22, respectively. The data are listed in Table 4.

The apple variety identification accuracies for the calibra-
tion and validation sets of LVQ models under different char-
acteristic variable selection methods are given in Table 5. The
results show that for the calibration set, the FS-LVQ and PCA-
LVQmodels had higher average accuracy (99.4 %) than SPA-
LVQ (94.3 %). For the validation set, the accuracy of FS-LVQ
reached 98.8 %, followed by SPA-LVQ and PCA-LVQ
(93.8 %). As for total average accuracy, FS-LVQ had the
highest accuracy (99.1 %), followed by PCA-LVQ (96.6 %)
and SPA-LVQ (94.1%). The accuracy was higher than 90.7%
for each apple variety. Especially, FS-LVQ had 100 % accu-
racy for ‘Pink Lady’ both in the calibration and validation sets.

Models Developed by SVM

The RBF was used as the kernel function in this study.
Fivefold cross validation was applied to select c and g. When

the ranges of c and gwere set from 2−6 to 26, from 2−7 to 27, or
from 2−8 to 28, the determined values of c and g were same as
when the range was set from 2−5 to 25. Therefore, the range of
2−5 to 25 with an increment of 20.5 was used to select c and g
for the SVM.

For each combination of c and g, the SVM model was
established, and the accuracy was calculated. The optimal
values of c and g were determined by the highest accuracy
in all combinations of c and g. Detailed processing for param-
eter selection was discussed elsewhere (Chang and Lin 2011;
Cheng et al. 2013). Figure 6 summarizes the process of
selecting these parameters. The determined optimal c and g
for FS-SVM, PCA-SVM, and SPA-SVM were 2 and 0.125,
16 and 2, and 4 and 0.345, with the apple variety identification
accuracy of 100, 98.1, and 97.5 %, respectively, for the
calibration set (Fig. 6).

Table 5 lists the apple variety identification accuracies for
the calibration and validation sets of SVM models under
different characteristic variable selection methods. The results
show that for the calibration set, the average accuracy of FS-
SVM was 100 %, followed by PCA-SVM (98.1 %) and SPA-
SVM (97.5%). For the validation set, both FS-SVM and SPA-
SVM had 100 % average accuracy, higher than that of PCA-
SVM (97.5 %). As for total average accuracy, FS-SVM
(100 %) was better than SPA-SVM (98.8 %) and PCA-SVM
(97.8 %). The lowest accuracy for each apple variety was
96.2 %. FS-SVM obtained 100 % identification rate for each
apple variety, not only in the calibration set but also in the
validation set.

Models Developed by ELM

The “sig.” function was selected as the excitation function to
develop the ELMmodels. The numbers of hidden layer nodes

0 2 4 6 8 10 12 14 16

0.3

0.4

0.5

0.6

0.7

0.8

G

Number of variables included in the model

Fig. 4 G value dependence on the number of variables selected by SPA
in the calibration set. The solid square represents the point at which the
number of variables was finally selected by SPA

Table 3 The 12 variables selected by SPA

No. Frequency
(MHz)

Dielectric
properties

No. Frequency
(MHz)

Dielectric
properties

1 10.000 ε′ 7 188.971 ε″

2 32.099 ε′ 8 379.045 ε″

3 10.000 ε″ 9 460.659 ε″

4 23.675 ε″ 10 585.501 ε″

5 66.887 ε″ 11 723.870 ε″

6 134.164 ε″ 12 1,800.000 ε″

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

70%

75%

80%

85%

90%

95%

100%

A
cc

u
ra

cy

Number of hidden layer nodes 

Fig. 5 The accuracies under different numbers of hidden layer nodes for
LVQ networks in the calibration set. The blue square, red triangle, and
purple circle represent the points at which the optimal numbers for FS,
PCA, and SPA, respectively, were finally selected
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of ELM models were also determined by the trial and error
method (Chen et al. 2012). The range of number of hidden
layer nodes was set from 1 to 50 at first; then, the number of
hidden layer nodes was gradually increased by 1 at a time. The
optimal numbers of nodes were determined based on the
highest variety identification accuracy. Since the initial weight
value of ELMwas random, the performance of the model was
unstable. To overcome the problem, a model repeated 1,000
times was employed here. According to the average accura-
cies, the number of hidden layer nodes was chosen. The
average accuracies of the calibration set in 1,000 times repe-
tition under different numbers of hidden layer nodes for ELM
with different characteristic variable selection methods of FS,
UVE-PLS, and SPA are shown in Fig. 7. Based on the highest
accuracy, the numbers of hidden layer nodes for FS-SVM,
PCA-SVM, and SPA-SVM were decided as 38, 35, and 30,
respectively (Table 4).

The apple variety identification accuracies for the calibra-
tion set and the validation set of ELM models under different
characteristic variable selection methods are also listed in
Table 5. Table 5 shows that for the calibration set, the accuracy
of FS-ELM reached 99.8 %, higher than that of SPA-ELM
(99.3 %) and PCA-ELM (98.7 %). For the validation set, the
accuracies of three ELMmodels were higher than 99.3%. The
highest total average accuracy was 99.8 % (FS-ELM),

followed by 99.5 % (SPA-ELM) and 99.0 % (PCA-ELM).
As for each apple variety, the accuracy was higher than
98.0 %.

Comparison of Variety Identification Performance
for Different Models

When the three modeling methods were compared, it was
found that the ELM had the best identification accuracy,
followed by SVM and LVQ, since the lowest accuracy rates
of ELM, SVM, and LVQ for each apple variety were 98.0 %,
96.2 % and 90.7 %, respectively. The good prediction perfor-
mance of ELM was also noted in other classification work
(Heras et al. 2014; Termenon et al. 2013). At each modeling
method, FS did excellent work in identifying apple varieties.
For example, for SVM, FS-SVMhad 100% accuracy for each
apple variety both in the calibration and validation sets. For
LVQ and ELM, FS also had higher average accuracy not only
in the calibration set but also in the validation set. The reason
is that the FS includes all useful information. When SPA and
PCAwere compared, it was found that SPA did a little better
work in SVM and ELM models. However, PCA played a
better job than SPA in LVQ models. This indicates that dif-
ferent variable extraction methods have different effects in
different models. Therefore, it is necessary to find the most

Table 4 The optimal training parameters of different models

Pretreatment
methods

LVQ SVM ELM

Input layer nodes Hidden layer nodes Output layer nodes c g Input layer nodes Hidden layer nodes Output layer nodes

FS 102 10 1 2 0.125 102 38 1

PCA 3 11 1 16 2 3 35 1

SPA 12 22 1 4 0.354 12 30 1

Table 5 Apple variety identification accuracies of LVQ, SVM, and ELM models under different variable selection methods

Modeling
approach

Characteristic variables
selection method

Accuracy for calibration set (%) Accuracy for validation set (%) Total average

Fuji Pink Lady Red Rome Average Fuji Pink Lady Red Rome Average

LVQ FS 99.1 100 99.1 99.4 98.2 100 98.2 98.8 99.1

PCA 99.1 100 99.1 99.4 90.7 98.2 92.6 93.8 96.6

SPA 92.5 98.1 92.5 94.3 90.7 100 90.7 93.8 94.1

SVM FS 100 100 100 100 100 100 100 100 100

PCA 98.1 99.1 97.2 98.1 96.3 100 96.3 97.5 97.8

SPA 99.1 97.2 96.2 97.5 100 100 100 100 98.8

ELM FS 99.9 99.8 99.7 99.8 99.8 99.3 99.8 99.8 99.8

PCA 98.0 100 98.0 98.7 99.0 100 99.0 99.3 99.0

SPA 99.6 99.3 98.9 99.3 99.4 100 99.3 99.6 99.5
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Fig. 6 The grid search process
for penalty factor (c) and RBF
kernel parameter (g) combination
of three selection methods for
SVM by fivefold cross validation.
The black circle represents the
point at which the optimal c and g
were chosen
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suitable characteristic variable selection method for each
ANN models.

The characteristic variables extracted by SPA and PCA
were 12 and 3, which were only 11.8 and 2.9 % of the
variables in FS. It has been reported that the training time
increases linearly with the number of variables, i.e., the di-
mension of spectra (Chauchard et al. 2004). Speed is one of
the most important factors for online detection. Although the
full dielectric spectra obtained the best identification accuracy,
too many variables included in FS reduce the operation speed.
Therefore, it is suggested that SPA-ELM and PCA-ELM,
whose total average accuracy was higher than 99.0 %, are
the optimal models in identifying apple varieties based on an
overall consideration of variables used as inputs for the
models and variety identification accuracies for the calibration
and validation sets.

Conclusions

The contribution of this work is to present a rapid and nonde-
structive approach for discriminating different varieties of
apples. At present, there is only qualitative analysis in most
of the discrimination of fruit varieties by using visible/near-
infrared spectroscopy or hyperspectral spectroscopy, and no
research had been devoted to fruit variety discrimination by
using dielectric spectroscopy. In this research, qualitative
analysis for three varieties of apples by means of combining
dielectric spectra, ANN, and chemometric methods was made.
The KS method was used for subset partitioning. Two che-
mometric methods (PCA and SPA) were adopted to extract
characteristic variables from original dielectric spectra, and
three ANN modeling approaches (LVQ, SVM, and ELM)

were employed to establish variety determination models.
By processing for PCA and SPA, 3 principal components
and 12 characteristic variables were selected, respectively, as
input data instead of full dielectric spectra with 102 variables.
ELM had the best identification accuracy, followed by SVM
and LVQ. FS performed well in determining apple varieties,
but the many variables included in FS slow down the model-
ing speed. In ELM and SVM models, variables extracted by
SPA performed better than PCA. Among the established nine
models, the total average accuracy of SPA-ELM and PCA-
ELM reached 99.5 and 99.0 %, respectively. SPA-ELM and
PCA-ELM had good potential in identifying apple varieties
quickly and efficiently. The research demonstrates that dielec-
tric spectra associated with ANN and chemometric ap-
proaches can be adopted for fruit variety nondestructive
determination.
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