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ABSTRACT: Detection of plant volatile organic compounds
(VOCs) enables monitoring of pests and diseases in
agriculture. We previously revealed that a localized surface
plasmon resonance (LSPR) sensor coated with a molecularly
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enhanced by the MISG coating, its sensitivity was decreased.
Here, gold nanoparticles (AuNPs) were doped in the MISG
to enhance the sensitivity of the LSPR sensor through hot
spot generation. The size and amount of AuNPs added to the
MISG were investigated and optimized. The sensor coated
with the MISG containing 20 4L of 30 nm AuNPs exhibited
higher sensitivity than that of the sensors coated with other
films. Furthermore, an optical multichannel sensor platform containing different channels that were bare and coated with four
types of MISGs was developed to detect plant VOCs in single and binary mixtures. Linear discriminant analysis, k-nearest
neighbor (KNN), and naive Bayes classifier approaches were used to establish plant VOC identification models. The results
indicated that the KNN model had good potential to identify plant VOCs quickly and efficiently (96.03%). This study
demonstrated that an LSPR sensor array coated with a AuNP-embedded MISG combined with a pattern recognition approach
can be used for plant VOC detection and identification. This research is expected to provide useful technologies for agricultural
applications.
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lants can release volatile organic compounds (VOCs) as

biomarkers from leaves, flowers, roots, and other tissues to
the environment through a variety of complicated mecha-
nisms.' > It has been confirmed that plant VOCs play an
ecological role in attraction of species-specific pollinators and
mediation of tritrophic interactions in terrestrial ecosystems.4
Furthermore, pest damage and disease can cause changes in
plant VOCs that help with self-healing, mechanical wounding,
herbivore feeding, infection by pathogens, and repelling
pests.”® In 1983, Rhoades and colleagues speculated that
willows can release some airborne signals as a type of “plant-to-
plant communication” to warn their neighbors of upcoming
danger.” Their hypothesis was confirmed soon after by Baldwin
in a study on poplars.” Plant VOCs mainly consist of terpenes
such as cis-jasmone (CJ), a-pinene, limonene, and y-
terpinene.””"> The emission rate of plant VOCs strongly
depends on environmental conditions and stressor agents.'”"
Therefore, detection of plant VOCs in the environment can be
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used for pest and disease monitoring in agriculture. Plant
VOCs are currently detected and analyzed by gas chromatog-
raphy/mass spectrometry or gas chromatography electro-
antennographic detection.'®™'® However, these methods are
not suitable for real-time plant VOC monitoring because they
are costly, time-consuming, and not portable. Consequently,
sensors for real-time detection of plant VOCs with high
sensitivity, fast response speed, and interference immunity
need to be developed for agricultural applications.

Localized surface plasmon resonance (LSPR) is a phenom-
enon that involves collective electron charge oscillations at
noble metal nanoparticle (NP) surfaces, which has been used
as a transducer by converting changes in refractive index (RI)
into spectral shifts.'”~>* LSPR based on this mechanism shows
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Figure 1. Schematic of AuNPs@MISG-coated Au nanoislands for selective plant VOC detection.

great potential in a wide range of applications, such as drug
delivery, biological imaging, metal ion detection, and
biosensors, because of its rapid response and high
sensitivity.”> >’ However, nonspecificity limited their applica-
tions. Therefore, absorption materials, such as molecularly
imprinted polymers, are applied for enhancing the selectivity
for LSPR sensors. Our former study revealed that a molecularly
imprinted sol—gel (MISG)-coated LSPR sensor was effective
for CJ vapor detection.’® In the sol—gel process, based on the
interaction (hydrogen bond, 7—7 bond, and van der Waals)
between the functional groups of template molecules and the
functional monomer in titanium oxide sols, templates can be
covered by TiO, matrix. By removing these template
molecules, the cavities similar to the target molecules can be
remained in the sol—gel matrix for enhancing the selectivity of
sensors. Although the selectivity of the sensor was enhanced by
the MISG coating, its sensitivity was decreased. Recently,
molecularly imprinted polymers have been combined with gold
nanoparticles (AuNPs) to amplify the LSPR causing the hot
spot effect.”’ Based on the LSPR coupling between AuNPs in
an MIP and a thin gold film, RI changes can be enhanced for
use in optical sensing.”> Therefore, AuNPs embedded in an
MISG (denoted as AuNPs@MISG) should be effective at
enhancing the signal intensity of a sensor while maintaining
high selectivity. In addition, considering the complex nature of
the agricultural environment, a multichannel sensor array
combined with a pattern recognition method should be
developed for plant VOC identification.

The primary goal of this research is to develop a AuNPs@
MISG LSPR sensor platform to detect and identify plant
VOCs. As illustrated in Figure 1, the sensor consists of an
LSPR sensing layer coated with an MISG layer. The LSPR
sensing layer is fabricated by vacuum sputtering and annealing.
An AuNPs@MISG layer is formed around the AuNPs in the
sensing layer by spin coating. Sensor responses are captured by
monitoring changes in the RI by absorbance spectra. AuNPs
doped in the MISG are expected to increase the signal
intensity through the hot spot effect. Critical parameters of the
AuNPs@MISG (AuNP size, amount, and spin coating speed)
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are tuned to optimize sensitivity. By spin coating MISG
solutions with diverse template molecules on AuNPs, a
multichannel optical sensor platform for plant VOC identi-
fication is constructed. The identification capability of the
sensor platform is tested using four plant VOCs (C]J, a-pinene,
limonene, and y-terpinene) and their binary mixtures. Principal
component analysis (PCA) and linear discriminant analysis
(LDA) are used to visualize the cluster trends of vapor samples
in low dimensions. To assess the potential of the sensor
platform, three common supervised approaches, LDA, k-
nearest neighbor (KNN), and naive Bayes classifier (NBC),
are used to establish plant VOC identification models. The
objective of this study is to develop a new sensing strategy for
plant VOC detection in agricultural applications.

B MATERIALS AND METHODS

Materials, Chemicals, and Instrumentation. Titanium tetra-
butoxide (TBOT), isopropanol, CJ, limonene, y-terpinene, titanium
tetrachloride (TiCl,), acetone, and ethanol were purchased from
Wako Pure Chemical Industries Co. Ltd. (Osaka, Japan). (3-
Aminopropyl)triethoxysilane (APTES) was purchased from Shin-Etsu
Chemical Co., Ltd. (Tokyo, Japan). AuNP suspensions (NP diameter:
10, 20, 30, and 40 nm, stabilized suspension in citrate buffer,
concentrations: 6.0 X 102, 6.54 x 10", 1.8 x 10"}, and 7.2 x 10'°
particles/mL), a-pinene, and trimethoxyphenylsilane (TMPS) were
purchased from Sigma-Aldrich (St. Louis, MO). All reagents were
used as received. Scanning electron microscopy (SEM; SU8000,
Hitachi, Japan) was used to image sensor morphology.

Preparation of AuNPs@MISG Reaction Solution. The MISG
reaction solutions were prepared as reported previously.>® First,
TBOT (0.441 mmol, 150 uL) was dissolved in isopropanol (2 mL) as
a precursor. Then, CJ, a-pinene, limonene, or y-terpinene (S0 uL) as
a template material and TMPS (0.252 mmol, 50 xL) as a functional
monomer were added with stirring. TiCl, (0.132 mmol, 25 uL) was
added to initiate the reaction and then the MISG reaction solution
was prehydrolyzed in a water bath at 60 °C for 1 h with stirring. The
mixture was vigorously stirred for 8 h at room temperature (20 °C) to
complete the MISG reaction. Finally, AuNP suspension (50 L) was
added to the hydrolyzed MISG solution while stirring. Before spin
coating, the reaction solution was stirred at room temperature for 8 h.

AuNPs@MISG-Coated LSPR Sensor Fabrication. The LSPR
substrates were prepared as reported previously.” Briefly, a glass
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substrate (12 X 9 mm) was ultrasonically cleaned in ultrapure water,
acetone, and ethanol and then immersed in a 1:10 (v:v) APTES/
ethanol solution for 8 h. After being cleaned with ethanol and dried
with flowing nitrogen, a 3 nm thick layer of AuNPs was deposited
using a quick coater (SC-701 HMCII, Sanyu Electron, Japan). The
substrate was heated in a muffle furnace (SSTS-13K, ISUZU,
Seisakusho, Japan) at 500 °C for 2 h and then cooled to room
temperature. The sample was sputtered and annealed again under the
same conditions to form a high-sensitivity LSPR substrate.”* The
MISG reaction solution (20 yL) was then spin-coated on the AuNP
layer for 1 min. Finally, the sample was annealed at 130 °C for 1 h to
complete MISG fabrication and evaporate the template molecules. All
samples were stored under vacuum to remove VOCs from the MISG.

Sensing System and Software. The vapor generation and
sensing systems used in this study were similar to those in our
previous study.” Plant VOC vapor was generated from a glass bottle
with odorants (2 mL) using the headspace method and then
controlled by two mass flow controllers with a LabView system (2014,
National Instruments, Austin, USA). The concentrations C of plant
VOCs (in ppm) were calculated by

_ kxD x10°
a F (1)

where D, is the diffusion rate (ug/min), F is the flow rate of the
diluent air (L/min), and k is the factor used to convert gas weight to
gas volume, which is defined by

C

224X (273 + t) X 760

k
M X 273 X P ()

Here, M is the molecular weight of the plant VOC molecule, ¢t is the
temperature of the gas chamber (°C), and P is the gas pressure (760
mmHg). A customized optical sensing system was used in the present
study. Absorption spectra were acquired over the range of 400—900
nm at a resolution of 0.1 nm and recorded by OPwave+ software
(Ocean Optics). The plant VOC vapor flow was switched on for 600 s
and then switched to clean air for 600 s during all the test cycles. The
response matrix from the AuNPs@MISG LSPR sensor array was
processed and analyzed by R (version 3.4.3). The KNN, LDA, and
NBC models were established using R packages (e1071, MASS, and
caret).

B RESULTS AND DISCUSSION

Effect of Au NP Size on LSPR. Because the size of AuNPs
is a critical factor affecting their LSPR signals, MISG-coated
AuNPs with diameters of 10, 20, 30, and 40 nm were
considered. The typical features of the MISG-coated samples
were analyzed using UV—vis spectroscopy and SEM, as shown
in Figures S1 and S2, respectively. Relative to that of the
MISG-coated sample, the LSPR peaks of the AuNPs@MISG-
coated samples were blue-shifted. In addition, the surfaces of
the AuNPs@MISG-coated samples varied with the AuNP size,
indicating that the sol—gel process was affected by the
diameter of the AuNPs. The responses of the MISG- and
AuNPs@MISG-coated samples to CJ vapor were measured by
the change of absorption AA, which was calculated using

AA = Agas - Aair (3)
where A,;, is the absorption in air and A, is the absorption in
the plant VOC vapor. The sensitivity to CJ vapor of various
MISG-coated samples is summarized in Figure 2. The MISG
without AuNPs offered lower sensitivity than that of the
AuNPs@MISG-coated samples, revealing that the AuNPs
improved the response of the MISG to target molecules. The
response of AuNPs@MISG-coated sensor with 30 nm AuNPs
was 6.33 times that of the one without NPs. An SEM image of
a AuNP layer is illustrated in Figure S3a. The particle size
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Figure 2. Response affected by Au nanoparticle size in MISGs.

distribution histogram of the spherical AuNPs was analyzed by
Image] (Figure S4). The analysis indicated that the diameter of
the AuNPs on the substrate was 34.13 + 9.41 nm, which is
close to that of the AuNPs in the MISG (30 nm). The high
sensitivity of the sensor was therefore caused by hot-spot
coupling between the AuNPs on the substrate surface and
those in the MISG. Therefore, 30 nm is the optimal size for the
AuNPs in the MISG.

Optimization of the Amount of AuNPs. To obtain the
best performance for plant VOC detection, the effect of the
amount of AuNPs on sensing behavior was investigated. UV—
vis spectra and SEM images of MISG samples with different
amounts of AuNPs are presented in Figure S5 and S6,
respectively. The responses of the AuNPs@MISG-coated
samples to CJ vapor were measured and are depicted in
Figure 3. Evidently, the sensitivity of the sensors increased with
the AuNP concentration initially and then decreased. The
results revealed that the sensor coated with the MISG
containing 20 yL of 30 nm AuNPs had the highest sensitivity
of those investigated.
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Figure 3. Response affected by Au nanoparticle amount in MISGs.
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Optimization of Spin Coating Speed. The thickness of
the sensing film influences the sensitivity of LSPR sensors.*
Here, spin coating speeds of 2000, 3000, 4000, and S000 rpm
were selected to optimize the thickness of the AuNPs@MISG
coatings. The sensitivities to CJ vapor of samples coated with
the optimal AuNPs@MISG solution at different coating speeds
are illustrated in Figure 4. A thinner MISG layer exhibited
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Figure 4. Response affected by spin coating speed.

lower selectivity for target molecules. However, a layer that was
too thick would have a long recovery time.”* Considering the
observed sensor responses, the optimal spin coating speed was
selected as 3000 rpm in the present study.

CJ Detection with the Optimized AuNPs@MISG-
Coated LSPR Sensor. To evaluate the interference immunity
of the AuNPs@MISG-coated sensor, it was exposed to the
three primary plant VOCs: a-pinene, limonene, and y-
terpinene. All the responses were normalized to the plant
VOC concentrations using eq 4:

R _ R
normalized — 7 /&y
1g(Cieqt)

(4)

where R is the original sensor response and C. is the
concentration of each plant VOC. For CJ, a-pinene, limonene,
and y-terpinene, calculated C, values were 10 + 1, 188 + 34,
971 + 59, and 750 + 36 ppm, respectively.

The normalized in situ response of the optimized AuNPs @
MISG-coated LSPR sensor to these interferents is shown in
Figure 5. The response to CJ was much higher than that to the
interfering plant VOCs. This indicates that the developed
sensor has sufficient interference immunity for use in
agricultural applications.

AuNPs@MISG-Coated LSPR Sensor Array. Although the
sensitivity of the sensor was enhanced because of the hot spot
effect, the response intensity of the sensor was affected by the
high concentrations of interfering plant VOCs. To address this
problem, a AuNPs@MISG LSPR sensor array was constructed
for identification and detection of plant VOCs. Four types of
AuNPs@MISG reaction solutions were prepared using the
optimal preparation conditions. By spin coating these solutions
at 3000 rpm on the AuNP-coated surface, a sensor array was
developed for pattern recognition of plant VOCs (Figure S3).
The sensor array included five channels: bare, MISGg;,
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Figure 5. Real-time responses of AuNPs@MISGc-modified Au-
islands to four types of plant VOCs.

MISGq.pinenes MISGiimonenes and MISG,.terpinene- The response
characteristics of the array to four single plant VOCs (CJ, a-
pinene, limonene, and y-terpinene) and four binary mixtures
(CJ] + a-pinene, CJ + limonene, a-pinene + limonene, and
limonene + y-terpinene) were investigated. For each type of
vapor, three vapor flow rates (0.3, 0.5, and 0.7 L/min) were
measured at each concentration, and the measurements were
repeated three times. Therefore, a data set containing 72
samples (8 plant VOCs X 3 flow rates X 3 repeats) was
collected for subsequent research. Both plant VOC vapor
generation and sensing measurements were performed at room
temperature.

Correlation analysis was carried out initially to evaluate the
relationship of each channel. The Pearson correlation
coefficient was calculated using eq 5,*

Y x-D -7
\/Zf\; (x; - x)’ zzl\:rl (yi - ?)2 (s)

where x and y indicate the response vectors for two channels;
X and y are the mean values of vector x and y, respectively; and
N is the dimension of vector x or y (72). Figure 6 reveals there
was a low correlation (under 0.4) between the bare and MISG-
coated channels, indicating that the bare channel has different
information to others. Because the bare LSPR sensor has low
selectivity for the target molecules, the response of the bare
channel would be related to the concentration of the plant
VOC:s. In contrast, the responses of the MISG-coated channels
contained contributions from the MIP and matrix effects,
which increase selectivity for target molecules.

To visualize the clustering trends of vapor samples in low
dimensions, PCA was performed on the normalized response
matrix (Ms,,s). The first three principal components (PCs),
which captured 84.33% of the cumulative variance proportion
of the response data, are plotted in Figure 7. In PCA space,
only limonene (PC1—PC2 space, Figure 7a) and y-terpinene
(PC2—PC3 space, Figure 7c) samples formed differentiable
clusters. It was difficult to distinguish clearly between the
groups for other categories, such as the binary mixtures.

The response matrix was also analyzed by LDA. Unlike
PCA, LDA is a supervised approach that aims to achieve an

Cor(x, y) =
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Figure 6. Correlation matrix for sensor array. CH1, CH2, CH3, CH4,
and CHS are bare, MISGgp, MISGg pinenes MISGyimonenes and
MISG,.Terpinene-coated samples, respectively.

optimal transformation by minimizing the intragroup distances
and maximizing the intergroup distances simultaneously.’”
Figure 8 shows 72 samples from eight clusters plotted in LDA
spaces. In the LDA1—LDA?2 space (Figure 8a), CJ, y-terpinene,
CJ + limonene, and limonene + y-terpinene can be separated
easily. Considering LDA1-LDA2 and LDA2—-LDA3 (Figure
8b) simultaneously, a-pinene and limonene occupied separate
regions. We also found overlap between CJ + a-pinene and a-
pinene + limonene in all LDA spaces. This means that it is
hard to separate the plant VOCs in low-dimension spaces.
Therefore, pattern recognition approaches need to be explored
and evaluated.

Identification Model Calibration. To investigate the
ability of the AuNPs@MISG-coated LSPR sensor array to
discriminate various types of plant VOCs, three commonly
used classification frameworks (LDA, KNN, and NBC) were
used. KNN has been widely applied as a supervised pattern
recognition approach because of its robust nature and
suitability for limited sample sets.”® The main assumption of
KNN is that the closer the samples, the more likely it is that
they belong in the same category.””*’ Considering the sample
size, three nearest neighbors were considered in the present
study. Similarly, NBC is a supervised statistical model
established by calculating the probability that a given sample

belongs to a certain class.*' Because of its simple structure and
ease of implementation, NBC has been widely used.*” More
details on KNN and NBC can be found elsewhere.**~*

In this study, 72 samples were divided into calibration and
validation sets by the random selection method.”” Samples
from the calibration set were used as training models, and
samples from the validation set were used to evaluate the
established models. The ratio of samples in the calibration and
validation sets was 7:3. Because the sample partition was
random, the performance of the model was unstable.
Therefore, sample partition was repeated 100 times to
overcome this problem. The identification performance of a
classification framework was evaluated by accuracy™ using eq
6,

TPs + TN
s+ I x 100%
TPs + TNs + FPs + FNs (6)

accuracy =

where a true positive (TP) is when a positive sample is
classified as a positive example, a true negative (TN) is when a
negative sample is classified as a negative example, a false
positive (FP) is when a negative sample is classified as a
positive example, and a false negative (FN) is a positive sample
is classified as a negative example. According to the average
accuracies, the optimal model was chosen.

The plant VOC identification accuracies for the calibration
and validation sets of the three models are listed in Table 1.
Other standard performance measures (sensitivity, specificity,
precision, recall, and F1 score) are summarized in Tables S1
and S2. For each plant VOC, the LDA model showed the
highest average accuracy in identifying CJ (99.40 = 3.20%), 7-
terpinene (99.56 + 1.02%), and a-pinene + limonene (97.49 +
3.40%). The KNN model readily identified a-pinene (89.83 +
8.87%) and limonene (95.57 + 4.49%). The NBC model
exhibited the highest identification accuracy for mixtures,
including CJ + a-pinene (95.30 + 6.34%), CJ + limonene
(100%), and limonene + y-terpinene (100%). This indicates
that the NBC model was more suitable to deal with
complicated samples than the other models. For the calibration
set, the accuracy of the NBC model reached 97.02 + 2.79%,
which was higher than that of the LDA model (86.66 + 2.49%)
and KNN model (95.58 + 8.06%). For the validation set,
KNN had the highest accuracy (97.02 + 2.79%), followed by
LDA (94.72 + 8.52%) and NBC (94.39 + 9.15%), indicating
that the generalization ability of the KNN model is higher than
that of the others. Considering total average accuracy, KNN
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Figure 8. LDA score plot of the first three discriminant factors achieved from the response matrix of 72 samples from four plant VOCs (CJ, a-

pinene, limonene, and y-terpinene) and their binary mixtures (CJ + a

-pinene, CJ + limonene, a-pinene + limonene, and limonene + y-terpinene).

Table 1. Plant VOCs Identification Accuracies of Models Based on the Response Matrix (%)

calibration set validation set total avg
plant VOCs modeling approach mean SD mean SD mean SD
qJ LDA 99.93 0.63 98.87 4.48 99.40 3.20
KNN 97.54 6.63 96.98 3.53 97.26 531
NBC 96.98 3.53 91.79 11.30 94.39 8.37
a-pinene LDA 89.98 4.20 86.85 13.13 88.42 9.75
KNN 91.10 11.69 88.55 4.55 89.83 8.87
NBC 88.55 4.55 82.74 15.86 85.65 11.67
limonene LDA 98.78 1.40 93.55 12.81 96.17 9.11
KNN 97.31 6.29 99.83 0.90 98.57 4.49
NBC 99.83 0.90 94.54 9.60 97.19 6.82
y-terpiene LDA 99.87 0.34 99.24 1.40 99.56 1.02
KNN 97.60 6.13 99.94 0.63 98.77 4.36
NBC 99.94 0.63 98.21 4.58 99.08 3.27
CJ + a-pinene LDA 88.13 4.32 86.86 11.59 87.50 8.75
KNN 92.98 11.17 96.48 4.29 94.73 8.46
NBC 96.48 4.29 94.11 7.87 95.30 6.34
CJ + limonene LDA 99.55 1.60 97.74 5.65 98.65 4.15
KNN 98.94 3.79 100.0 0.00 99.47 2.68
NBC 100.0 0.00 100.0 0.00 100.0 0.00
a-pinene + limonene LDA 97.62 2.20 97.35 428 97.49 3.40
KNN 89.91 10.69 94.40 3.11 92.16 7.87
NBC 94.40 3.11 93.71 10.77 94.06 7.93
Limonene + y-terpiene LDA 99.38 1.88 97.33 6.14 98.36 4.54
KNN 99.27 2.99 100.0 0.00 99.64 2.11
NBC 100.0 0.00 100.0 0.00 100.0 0.00
summary LDA 96.66 2.49 94.72 8.52 95.69 6.28
KNN 95.58 8.06 97.02 2.79 96.30 6.03
NBC 97.02 2.79 94.39 9.15 95.71 6.77

had the highest accuracy (96.30 + 6.03%), followed by LDA
(95.69 + 6.28%) and then NBC (95.71 + 6.77%). Overall, we
found that KNN was the optimal model to identify plant
VOCs based on accuracies for the calibration and validation
sets. We also found that the lowest accuracy achieved by the
models was higher than 95%. This indicated that enough
molecular information was captured by the AuNPs@MISG
LSPR sensor array to allow plant VOC identification.
Although the developed sensing platform is able to identify
plant VOCs, the information captured by the sensor array is
still not sufficient to deal with the complicated agricultural
environment. We believe that by including more channels in
the sensor array with coated with different MIPs and MISGs,
an array that is able to handle complicated vapor mixtures

could be obtained in the future. In addition, heterostructured
AuNPs could be used to further improve sensitivity through
the hot spot effect.

B CONCLUSIONS

An LSPR sensor coated with an MISG containing AuNPs to
amplify the sensing signal was developed for plant VOC
detection. The optimal size and amount of AuNPs doped in
the MISG were 30 nm and 20 L, respectively. Under optimal
conditions, the sensitivity of the AuNPs@MISG-coated sensor
was 12.33 times higher than that of the equivalent without
AuNPs, which was caused by hot spot enhancement. The real-
time responses of the sensor displayed good interference
immunity and repeatability. A five-channel AuNPs@MISG
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LSPR sensor array was designed to detect and identify four
plant VOCs alone and in binary mixtures. Correlation analysis,
PCA, and LDA were used to process the response matrix. The
results indicated that it was difficult to distinguish clearly
between the groups for the binary mixtures. Three supervised
modeling approaches (LDA, KNN, and NBC) were used to
establish plant VOC pattern recognition models. KNN
displayed high accuracy (96.03%), identifying plant VOCs
quickly and efficiently. This study demonstrated that a
AuNPs@MISG-coated LSPR sensor array combined with a
pattern recognition approach can be used for plant VOC
detection and identification, which may become a useful
technology for agricultural applications.
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