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A B S T R A C T
The prediction of structure-odor-relationship (SOR) by deep neural networks (DNN) via the structural
features of odorants has attracted great attention during the past decade. Due to the limited knowledge
on binding mechanism between odorant molecules and olfactory receptors, however, it is not sure what
kind of structural features play the most important role in smell recognition. In this work, diverse
deep neural networks, including molecular parameters neural network (MPNN), molecular graphic
convolution neural network (MG-CNN), molecular graph transformer neural network (MGTNN)
and atom interaction neural network (AINN), were used to extract the structure features of odorant
molecules and to predict the categorized odor perception. We optimized all of the models via
parameter tuning, and evaluated and compared their performance using a database containing 2849
odorants and their corresponding odor sensory category labels. The experimental results demonstrated
that an MG-CNN (pre-trainedResNet) combined with a multi-label DNN classifier produced the best
results, with an area under the receiver operating characteristic curve and F1 score of 0.877±0.028 and
0.726±0.028, respectively. This is the first systematic study for molecular structure features extracted
by different deep neural network and their predictive effect for SOR. We believe that these insights
regarding the use of DNN-based odorant molecular feature extraction for odor sensory identification
will be useful for introducing biologically interpretable artificial intelligence into olfactometry, and
thus contribute to our understanding of the mechanisms underlying human olfaction.

1. Introduction12

Identifying the interactions between odorants and sen-13

sory descriptions is important for the discovery and analy-14

sis of volatile compounds. To obtain the sensory informa-15

tion of odor, gas chromatography/olfactometry (GC/O) has16

been widely applied as a powerful odor analytic strategy17

in various research areas, such as agriculture, food, and18

environmental science [1–3]. Although GC/O can be used19

to attain accurate sensory and chemical characteristics of20

odorants, this approach is expensive and time-consuming,21

which can limit its application. The main expense associated22

with GC/O is the cost of hiring and training panelists to23

characterize the sensory qualities of odorants using their24

sense of smell. In addition, the sensory assessment of human25

panelists is personally dependent, which inevitably leads to26

subjectivity and inconsistency into the evaluation results.27

Research on the response patterns of neurons in the28

olfactory bulbs (OB) has illuminated the mechanisms under-29

lying biological olfaction [4–6]. However, many questions30

remain, such as why these molecules smell different from31
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one another and why we link smell feelings with certain se- 32

mantic descriptors, known as odor descriptors (ODs). These 33

questions may be answered by examining structure odor 34

relationships (SORs), the development of which presents 35

a difficult and interesting challenge [7–9]. During recent 36

years, many researches have been conducted to predict odor 37

perception of odorants using vairous parameters, such as 38

electronic or physicochemical characteristics [10, 11], mass 39

spectrometry (MS) [12, 13], and social network interactions 40

[14]. Additionally, novel methods, such as odor-based social 41

networks [15–17], machine learning (ML) [18–20], deep 42

neural network (DNN) models [21–24], and semantic-based 43

approaches [25] have been developed to calibrate models 44

that express the relationships between odorants and ODs. 45

These studies have demonstrated the possibility to use data- 46

driven approaches to solve the SOR problems. In line with 47

this trend, we have proposed a concept of ML-based GC/MS 48

olfactometry in which the sensory evaluation of panelists 49

is expected to be replaced by machine learning prediction 50

models [26]. 51

In the ML-based GC/O system, the molecular informa- 52

tion obtained by MS analysis of the individual GC peaks 53

is transfered into physicochemical parameters by molecular 54

calculation software (DRAGON). By building models ap- 55

propriately, the ODs of the odorants can be predicted with 56

high accuracy form their physicochemical parameters. The 57
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ML-based GC/O is a concept-of-proof study and there are58

many problems to be solved before its practical application.59

For example, in terms of the sample size, only limited60

ODs with high frequency of occurrence are targeted in our61

models. In reality, it has been reported that over 500 ODs62

are used for odor evaluation [27]. Therefore, many ODs,63

especially for those rare ODs are not considered by the64

models. In oder to solve this issue, we have recently proposed65

a categorization approach based on the semantic analysis66

of ODs, which make the model can cover the prediction of67

several hundreds of ODs [28]. Another remaining problem68

is that the model prediction is based on physicochemical69

parameters of odorants. The recent development of com-70

putational chemistry and ML make it possible to obtain71

various molecular structure information [29]. Unlike tradi-72

tional methods, DNNs can directly learn latent presentations73

from molecular structures, such as atom types and their74

positions, via back-propagation [30]. Moreover, an end-to-75

end strategy has been proposed as an effective nonlinear76

modeling method for learning molecular presentation in77

many fields, such as quantum chemical properties predic-78

tion, and compound-protein interaction identification [31].79

However, since detailed binding mechanism between the80

odorants and olfactory receptors is still not fully understood,81

which molecular features play the most important role in82

olfactory perception has not been cleared.83

The purpose of this study is dedicated to molecular84

feature mining by diverse DNNs for prediction of odor85

perception categories. Please note that our work is not to86

propose some novel classification frameworks, but using87

multi-type of feature extractors to understand the relation-88

ship between the structure features of odorants and odor89

perception categories. A schematic of the data processing90

and modeling procedures is illustrated in Fig. 1. We used91

molecular structures, including 2D molecular images and92

atom spatial locations, to predict odor sensory categories.93

For minding useful information from molecular structures,94

some molecular structural feature extraction methods were95

empoyed and their results were compared and discussed.96

Specifically, we used a molecular graphic convolution neu-97

ral network (MG-CNN) and molecular graph transformer98

neural network (MGTNN) to extract features from repre-99

sentations of molecular structure, such as molecular struc-100

ture images and topology graphs. Moreover, we used atom101

interaction neural networks (AINNs) to generate features102

from the spatial structures of atoms. To overcome limita-103

tions related to insufficient samples, we also considered pre-104

trained models, such as pre-trained CNNs and MGTNNs.105

We compared the feasibility of SOR prediction via molecu-106

lar fingerprints, molecular parameters, and molecular feature107

extraction based on MG-CNN, MGTNN, and AINN. We108

achieved the highest performance by applying molecular109

features extracted via a pre-trained MG-CNN combined110

with a mulit-label learning model (area under the ROC111

curve: 0.877±0.028 and F1 score: 0.726±0.028). Thus, the112

proposed odor sensory category identification model is a113

feasible option for developing artificial intelligence (AI)- 114

based GC/O. Although it would be still a challenge to replace 115

human assessors by ML models perfectly, the proposed 116

method could provide references for assessors to increase the 117

efficiency for odor analysis. Therefore, the limitation of odor 118

memory would be breaked through by the odor perception 119

categories recommendated by the proposed method. 120

2. Materials and methods 121

2.1. Data collection and preparation 122

To create an odor category prediction model, we col- 123

lected an extensive dataset containing 2849 odorants. We 124

used information from publicly available databases such 125

as the Odor Map database [32], Flavors and Fragrances 126

database (Sigma-Aldrich) [33], and the Good Scents database 127

[34]. As illustrated in Fig. 1, we collected and prepared 5 128

types molecular descriptors, including molecular parame- 129

ters, molecular fingerprints, molecular graphs, simplified 130

molecular input line entry system (SMILES), and atom coor- 131

dinates. Specifically, we used SMILES and RDKit Software 132

(ver. 2021.03.1) [35, 36] to collect normalized molecular 133

parameters (1826, detailed information can be found at [37]), 134

molecular fingerprints (binary, 2048 bits), and 2D molecular 135

graphs (RGB, 300×300 pixels). We used RDKit to obtain the 136

2D and 3D atom coordinates of the odorants, which we used 137

to train the model regarding the atomic interactions between 138

odorant structures and their odor sensory categories. In 139

total, 256 ODs were clustered into 20 categories using a 140

co-occurrence Bayesian embedding method. More detailed 141

information regarding the cleaning and categorization of 142

ODs can be found in Table S1 [28]. Data were processed 143

and analyzed using Python (ver. 3.9.0) and R (ver. 4.1.1). 144

Because the diverse molecular representations of odorants, 145

we need to employ various of feature extraction technologies 146

to obtain embeddings for model calibration. 147

2.2. Model calibration 148

The calibration and validation process for the odor cat- 149

egory model is shown in Fig. 1. First, all samples were 150

divided via random splitting into training and test sets with 151

a 4:1 ratio, and the reported results are averaged over 50 152

repetitions. Afterward, we employed molecular parameters, 153

molecular fingerprints, molecular graphic features, molec- 154

ular graph transformers, and atomic interaction embedding 155

to extract the molecular features of the odorants (Fig. 2). We 156

used a DNN approach to develop a multi-label odor category 157

learning model (the output size was 20) based on the afore- 158

mentioned molecular information. The cost function(𝚯) of 159

the DNN multi-label classifier was calculated by summing 160

the binary cross-entropy of each class, which was defined as 161

follows: 162

(𝚯) = 1
𝑁

𝑁
∑

𝑖=1

𝑀
∑

𝑗=1
𝑦𝑖,𝑗 × log(𝑦̂𝑖,𝑗) + (1 − 𝑦𝑖,𝑗) × log(1 − 𝑦̂𝑖,𝑗)

(1)
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where 𝚯 indicates the parameter set of the model, 𝑁163

indicates the sample number in the training set, and 𝑀164

indicates the number of odor categories, set as 20 in the165

present study. 𝑦𝑖,𝑗 and 𝑦̂𝑖,𝑗 are the ground truth and prediction166

label for category 𝑗 of sample 𝑖, respectively. By minimizing167

the cost function based on the stochastic steepest gradient de-168

scent algorithm, parameters from the DNN could be learned169

and updated. For each DNN method, the number of hidden170

layers and nodes was selected from 1 to 8 layers and {16, 32,171

64, 128, 256, 512, 1024, 2048} nodes, respectively. Network172

parameters, including the dropout ratio, learning rate, and173

training epoch, were set as 0.1, 1 × 10−4, and 200, respec-174

tively. The optimal models were determined according to175

their areas under the ROC curve (AUC) and F1 scores based176

on precision and recall, simultaneously. Both qualitative and177

quantitative data analyses were performed.178

Because molecular graphs, molecular SMILES sequences,179

and atom coordinates are not tabular data, they cannot be180

used as classifier inputs directly. Therefore, diverse fea-181

ture extraction methods were firstly employed to convert182

those unstructured data to tabular features. Specifically, pre-183

trained CNNs, sequence transformer, and atomic interaction184

embedding were utilized for moelcular graphs, SMILES185

sequences, and atom coordinates features extraction, re-186

spectively. Detail information of above-mentioned strategies187

were summarized as fllows.188

Odorant
dataset Odorants from multiple databases (sample size is 2849)

Sample set
partition Random split (train:test is 4:1)

Feature
extraction

Molecular
parameters

Molecular
finger prints

Atomic
interactions

Molecular
graphs

Model
calibration Multi-output neural network (ouput size is 20)

Model
validation Odor category predition

Training set Test set

Figure 1: Data processing for calibration and validation of an
odor category prediction model.

2.3. Molecular graphic feature extraction189

CNNs are highly successful graphic feature extractors,190

and are commonly developed with high accuracy by large191

training datasets [38]. Given the utility of convolution ker-192

nels and DNNs, CNNs have played a critical role in image193

and video processing [39]. Recently, molecular graph em-194

bedding has been used to model the relationships between195

chemical compounds [31]. To investigate the feasibility of196

molecular graphic presentation for odor category prediction,197

we used 4 types of effective CNNs, including the VGG-198

16, Restnet, Densnet, and Alexnet, as feature extractors for199

generating embedding from molecular images in the present200

study (Fig. 2a). Detailed structures for these CNNs have 201

been previously presented [40–43]. In the present study, we 202

used pre-trained CNN models for odor category prediction 203

to overcome the limitation of sample size. 204

2.4. Molecular sequence feature extraction 205

As an end-to-end supervised learning algorithm, graph 206

neural networks (GNNs) have been widely applied for se- 207

quence embedding in various fields [44]. Given that odor- 208

ants can be described as molecular topology graphs us- 209

ing SMILES, we considered GNNs to be appropriate for 210

molecular presentation. Broadly speaking, graph transform- 211

ers are considered to be a powerful tool for handling molec- 212

ular presentation through encoding via SMILES, which has 213

been used to predict compound protein interactions, virtual 214

screening, and molecular parameters [45]. 215

Although the molecular graph transformer neural net- 216

work (MGTNN) has strong potential for molecular model- 217

ing, deep learning models always require a large amount 218

of labeled data for training [46]. To overcome the above 219

problems, we used a self-supervised graph transformer 220

(GROVER) to obtain presentation information from the 221

odorants for odor category prediction. A briefly description 222

of the GROVER is given in Fig. 2b. The pre-training archi- 223

tecture was mainly composed of two parts: i) a transformer- 224

based neural network, and ii) a GNN for molecular structure 225

extraction [46]. The input of the model was an odorant graph 226

presentation  = (𝑉 ,𝐸), where 𝑉 was the set of atoms and 227

𝐸 was the set of bonds. Specifically, 𝑣𝑖 ∈ 𝑉 and 𝑒𝑖,𝑗 ∈ 𝐸 228

were the 𝑖-th atom and bond between the 𝑖-th and 𝑗-th atom, 229

respectively. The GNN was designed to embed extraction 230

according to queries (𝑸), keys (𝑲), and values (𝑽 ) from the 231

atoms in molecular graphs (). The message transmission 232

process of the GNN, as well as the neighborhood aggression 233

between an atom (𝑣) and its neighbors (𝑣) in an odorant 234

(), were adopted to iteratively (𝐿) update hidden states (𝒉𝑣) 235

for atom 𝑣, which can be written as: 236

𝒎(𝑙,𝑘)
𝑣 = Aggregate(𝑙)({(𝒉(𝑙,𝑘−1)𝑣 ,𝒉(𝑙,𝑘−1)𝑢 , 𝒆𝑣,𝑢)|𝑢 ∈ 𝑣})

𝒉(𝑙,𝑘)𝑣 = 𝜎(𝑾 𝑙𝒎(𝑙,𝑘)
𝑣 + 𝒃(𝑙))

𝒉 = Readout({𝒉(0,𝐾0)
𝑣 ,… ,𝒉(𝐿,𝐾𝐿)

𝑣 |𝑣 ∈ 𝑉 })

(2)

where 𝒎(𝑙,𝑘)
𝑣 indicates the passing message for atom 𝑣 237

under the 𝑘-th step of the 𝑙-th iteration. Here, we suppose 238

each iteration (𝑙) contains 𝐾𝑙 steps. Aggregate(𝑙)(⋅) is an 239

aggregation function, which can be selected from the mean, 240

max pooling, or graph attention mechanism. 𝜎(⋅) is the 241

activation function, and 𝒉 is the graph-level representation 242

generated by a Readout operation. The resulting matrices 243

(𝑸,𝑲 ,𝑽 ) were fed to the transformer module, which was 244

composed of graph multi-head attention blocks: 245

MultiHead(𝑸,𝑲 ,𝑽 ) = concat(head1, head2,… , head𝑘)𝑾 𝑂

head𝑖 = Attention(𝑸𝑾 𝑄
𝑖 ,𝑲𝑾 𝐾

𝑖 ,𝑽 𝑾 𝑉
𝑖 )

Attention(𝑸,𝑲 ,𝑽 ) = softmax(𝑸𝑲𝑇 ∕
√

𝑑)𝑽

Shang and Liu et. al.: Preprint submitted to Elsevier Page 3 of 13
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Molecular Graphic CNN (MG-CNN)Molecular Graphic

Restnet

Alexnet

Densenet

VGG-16

(a)

(b)

(c)

Molecular topology Self-supervised Molecular Graph Transformer

Graph presentation

Query Key Value

Linear

Layer normalization

Multi-head attention
Atom aggreation Bond aggreation

Layer normalization Layer normalization

Atom embeddings Bond embeddings

Atom C C O O

x -0.9205 0.4186 0.6628 1.3963

y -0.2840 0.3539 1.3778 -0.3336

z 0.0165 -0.1521 -0.7664 0.4664

Atom H H H H

x -0.9103 -1.6739 -1.1799 2.2069

y -1.2870 0.3140 -0.3260 0.1848

z -0.4170 -0.5039 1.0772 0.2793

Atom coordinates Atom Interaction Embedding Network

A
gg

re
ga

te
Atom embeddings
Atom Embeddings

C

O

…

H

Atom embeddings
Atom Embeddings

C

O

…

H

Atom C O … H

C

O

…

H

Distance matrix
Atom C O … H

C

O

…

H

Distance matrixPotential volume
Atom C O … H

C

O

…

H

Atom C O … H

C

O

…

H

Iteraction matrix

Potential volume
Atom C O … H

C

O

…

H

Atom C O … H

C

O

…

H

Iteraction matrix

Hidden layer-1 Hidden layer-L

Figure 2: Overview of the design of molecular feature extractors, including (a) a molecular graphic convolution neural network
(MG-CNN), (b) molecular graph transformer neural network (MGT-NN), and (c) atom interaction neural network (AINN).

(3)
where 𝑾 𝑸

𝑖 , 𝑾 𝑲
𝑖 , 𝑾 𝑽

𝑖 are the projection matrices of246

head𝑖. 𝑑 indicates the dimension of 𝒒 and 𝒌.247

The self-supervised learning tasks in the present study248

were assigned as contextual property prediction, and graph-249

level motifs, as well as molecular components, were used250

to predict links between both nodes and edges. In summary,251

we employed a pre-trained model, calibrated with 10 million252

molecules, as a molecular topology feature extractor in the253

present study. Instances of atom embedding (2048 dimen-254

sions) and bond embedding (2048 dimensions) generated by255

the above-mentioned procedure were used for odor category256

prediction. This simple strategy has been demonstrated to be 257

a powerful method in terms of graph expression and struc- 258

ture information extraction [47]. Details regarding graph 259

transformers can be found elsewhere [48]. 260

2.5. Atomic interaction embedding 261

Numerous studies have confirmed that atom interac- 262

tions are crucial to odor perception [49, 50]. Consequently, 263

molecular features generated by atomic interactions may be 264

feasible for odor category prediction. In the present study, we 265

modeled interactions between atoms in an odorant molecule 266

using a DNN-based model as a molecular feature extractor. 267

A brief description of the process for the AINN is given 268

Shang and Liu et. al.: Preprint submitted to Elsevier Page 4 of 13
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in Fig. 2c. Formally, given an odorant  = {(𝑎𝑖, 𝒄𝑖)}
𝑎𝑡𝑜𝑚
𝑖=1 ,269

where 𝑎𝑖 is the 𝑖-th atom type, 𝒄𝑖 ∈ ℝ2𝑜𝑟ℝ3 is the coordinate270

vector of the 𝑖-th atom, and 𝑁𝑎𝑡𝑜𝑚 is the total number of271

atoms for the odorant. To obtain an atom embedding descrip-272

tion for the odorant,  = {(𝒗𝑖, 𝒄𝑖)}
𝑎𝑡𝑜𝑚
𝑖=1 , where 𝒗𝑖 ∈ ℝ𝑑

273

is the embedded vector for the 𝑖-th atom. The embedding274

dimensionality 𝑑 is a hyper-parameter that must be assigned275

before training, and these atom embeddings were initialized276

randomly and optimized via back propagation. To select277

the update strategy for the above-mentioned embeddings,278

we referred to the previous use of DNNs with common279

graph-structured datasets [51, 52]. Accordingly, the atom280

embeddings were updated as follows:281

𝒗(𝑙+1)𝑖 = 𝑓 (𝒗𝑙𝑖) +
∑

𝑗∈⧵𝑖
𝑔(𝒗(𝑙)𝑗 , 𝑃 (𝑙)

𝑖,𝑗 , 𝛼
(𝑙)
𝑖,𝑗 )

𝑃 (𝑙)
𝑖,𝑗 = 𝑓 (𝒗(𝑙)𝑖 , 𝒗(𝑙)𝑗 , 𝑑𝑖𝑠𝑡𝑖,𝑗)

𝛼(𝑙)𝑖,𝑗 = 𝑓 (𝒗(𝑙)𝑖 , 𝒗(𝑙)𝑗 , 𝑑𝑖𝑠𝑡𝑖,𝑗)

𝑑𝑖𝑠𝑡𝑖,𝑗 = ||𝒄𝑖 − 𝒄𝑗||

(4)

where 𝑓 (⋅) and 𝑔(⋅) were the neural networks. 𝑃 (𝑙)
𝑖,𝑗 ∈ ℝ282

and 𝛼(𝑙)𝑖,𝑗 ∈ ℝ indicate the potential volume and interaction283

factor between the 𝑖-th and 𝑗-th atoms at the 𝑙-th hidden284

layer, respectively. 𝑑𝑖𝑠𝑡𝑖,𝑗 ∈ ℝ was the Euclidean distance285

between the 𝑖-th and 𝑗-th atoms. Thus, the atom interaction286

embeddings for the odorant (𝒙 ∈ ℝ𝑑) could be calculated287

by:288

𝒙 = Aggregate({𝒗𝑖}𝑎𝑡𝑜𝑚
𝑖=1 ) (5)

where Aggregate(⋅) was the aggregate function, which289

was mean pooling in the present study. As an option, we290

added a residual part to prevent the vanishing gradient291

problem in the DNN (res-AINN), which could be defined292

as follows:293

𝒗(𝑙+1)𝑖 = 𝑁𝑜𝑟𝑚(𝑓 (𝒗𝑙𝑖) +
∑

𝑗∈⧵𝑖
𝑔(𝒗(𝑙)𝑗 , 𝑃 (𝑙)

𝑖,𝑗 , 𝛼
(𝑙)
𝑖,𝑗 ) + 𝒗𝑙𝑖) (6)

Finally, the odorant embeddings 𝑿 = {𝒙𝑖
}
𝑠𝑎𝑚𝑝𝑙𝑒
𝑖=1294

were selected as inputs for subsequent models. In this study,295

the hyper-parameters𝐿, dimensions of embeddings 𝑑, learn-296

ing rate 𝜂, and learning epochs were selected as 6, {32,297

64, 128, 256, 512, 1024}, 0.001, and 200, respectively. We298

considered the feasibility of using molecular 2D and 3D299

coordinates, and discussed the embedding results. Detailed300

information regarding atom interaction embedding can be301

found in other publications [29].302

3. Results and discussion303

3.1. Data analysis304

We employed five different molecular structure repre-305

sentations, including odorant molecular parameters (MP),306

molecular fingerprints (FP), pre-trained molecular graphic 307

embeddings, pre-trained molecular graph transformer em- 308

beddings, and atom interaction embeddings in the present 309

study. First, we visualized the numeric vectors in low- 310

dimensional space using Barnes-Hut t-distributed stochastic 311

neighbor embedding (t-SNE) as an unsupervised statistical 312

method. This method has been widely applied for high- 313

dimensional data visualization [53]. The t-SNE presentation 314

of the odorants based on the above-mentioned vectors is 315

illustrated in Fig. 3 and Fig. S1. As reported in previous 316

studies, each odorant contained multi-odor category labels 317

[15, 16, 26, 28, 30]. Therefore, the distribution of odor 318

categories was visualized using colors representing alpha 319

values. Molecular graphic features extracted by Restnet (Fig. 320

3c) produced a better result than other molecular features 321

because most odorants from the same odor category are 322

clustered together. In contrast, odor cluster overlapping was 323

observed more frequently in the t-SNE map generated from 324

molecular fingerprints (Fig. 3a), molecular parameters (Fig. 325

3b), and molecular graph transformers (Fig. 3d). Molecular 326

graphs generated from four combined types of pre-trained 327

CNNs produced competitive results compared with other 328

molecular descriptors (Fig. S1). This result demonstrates 329

that odor categories are likely to be more strongly related 330

to molecular graphs than other descriptors. Therefore, we 331

inferred that an odor category identification model based on 332

molecular graphic features would be superior. 333

3.2. Molecular graphic CNN-based feature 334

analysis 335

Fig. 4 and Table S2 summarize the performance met- 336

rics of the odor category identification model based on 337

molecular graphic feature extraction. The details of model 338

calibration, including the optimal epochs, training loss, 339

and elapsed time, are illustrated in Table 1 and Fig. S2. 340

The pre-trained RestNet with DNNs (6 hidden layers) per- 341

formed significantly better than the other models, with 342

the highest AUC (0.877±0.028, p<0.001) and F1 score 343

(0.725±0.0278, p<0.001) on the test sets. It was followed by 344

the DenseNet (4 hidden layers, AUC 0.876±0.029, F1 score 345

0.716±0.035), VGG (6 hidden layers, AUC 0.875±0.028, 346

F1 score 0.716±0.033), and AlexNet (5 hidden layers, AUC 347

0.873±0.029, F1 score 0.723±0.033). The deep residual 348

framework of the most successful model may have overcome 349

the degradation problem that affects deep networks [42]. 350

In addition, the number of hidden layers in the DNN did 351

not play a necessary role in tuning the pre-trained CNN 352

model. To verify the abilities of the models for transfer 353

learning, we compared the prediction performances of the 354

CNNs depending on whether they were pre-trained. These 355

results are illustrated in Fig. 4. We found that the pre- 356

trained models had significantly (p<0.001) higher accuracy 357

compared with the models with un-trained CNNs. This 358

indicates that CNNs could learn universal image feature 359

extractors through training with a large dataset (ImageNet). 360

This conclusion is supported by previous research [54]. 361
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Figure 3: Odorant clustering using Barnes-Hut t-distributed stochastic neighbor embedding (t-SNE) based on (a) molecular
fingerprints, (b) molecular parameters, and (c) molecular graphic features extracted via a pre-trained Restnet and (d) molecular
graph transformer method based on the links between atoms and bonds. tSNE-1 and tSNE-2 were calculated using the t-SNE
method. Each point indicates an odorant, colored according to its odor category labels, and the distributions of odor categories
are given by the alpha values corresponding to the colors.

3.3. Molecular graph transformer based feature362

analysis363

A summary of the identification accuracy of the MGTNN364

models is given in Fig. 5 and Table S3. The optimal training365

epoch, loss, and elapsed time for the MGTNN models are366

presented in Table 1 and Fig. S3. When the selected atom367

and bond embeddings were included with 7 hidden layers,368

the MGTNN model had the highest AUC (0.813±0.035)369

and F1 score (0.696±0.032) in the test set. In addition, the370

AUC values for the models independently trained via atom371

or bond embeddings were 0.812±0.031 and 0.810±0.030,372

respectively. However, the data were not sufficient to con- 373

clude that considering atoms and bonds together produced 374

a significantly more accurate result than when they were 375

included individually (p>0.001). 376

3.4. Atom interaction-based feature analysis 377

Fig. 6 and Table S4 compares odor sensory category 378

identification according to the molecular features extracted 379

by AINNs. The results indicated that the AINN-DNN model 380

(2D, 512 embedded dimensions) had the highest identifica- 381

tion performance in terms of the AUC and F1 score, which 382
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Figure 4: Identification performance of four molecular graphic convolution neural network (MG-CNN) models: AlexNet, VGG,
DenseNet, and ResNet. The models were evaluated according to the average identification AUC (a), precision (b), recall (c), and
F1 score (d). Results were evaluated using the nonparametric Wilcoxon signed-rank test.

were 0.807±0.035 (p<0.01) and 0.696±0.023, respectively.383

However, we cannot claim that the molecular 2D coordi-384

nates were better for identification than the 3D coordinates385

because the analyses for both had a high p-value. Further-386

more, the models with residual modules did not exhibit a387

significant increase, likely because the vanishing gradient388

is not the critical obstacle limiting AINN performance. In389

addition, the dimension of atom embedding vectors did not 390

have a significant effect on the accuracy of odor category 391

identification. The optimal training epoch, loss, and elapsed 392

time for AINN models are listed in Table 1 and Fig. S4. 393

We found that the modeling time for 2D coordinates was 394

significantly smaller than that for 3D coordinates (p<0.001). 395
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Figure 5: Determination of odor category by molecular graph transformer neural network (MGTNN) models for atom embeddings
only, bond embeddings only, and combinations thereof. Models were evaluated according to the average identification AUC (a),
precision (b), recall (c), and F1 score (d). Results were subjected to the nonparametric Wilcoxon signed-rank test.

This suggests that the presented AINN models do not need396

spatial embedding for odor sensory identification.397

3.5. Performance comparison398

To identify the model with the best comprehensive399

performance for odor category identification, we compared400

the five types of models in terms of performance metrics, as401

presented in Fig. 7 and Table 2. Table 1 and Fig. S5 illustrates402

the optimal training epoch, loss, and elapsed time for the403

above-mentioned models. The predicted accuracies for each404

odor sensory category are summarized in Fig. S6-S10.405

The results confirmed that the model trained using molec-406

ular graphic features extracted via a pre-trained ResNet407

had significantly better performance than the other models408

(AUC 0.877±0.028, F1 score 0.726±0.028, p<0.0001),409

followed by the AINN-DNN (AUC 0.807±0.035, F1 score410

0.696±0.030), MPs (AUC 0.806±0.033, F1 score 0.689±0.031),411

MGTNN (AUC 0.804±0.028, F1 score 0.692±0.029), and412

FPs (AUC 0.796±0.036, F1 score 0.688±0.033). This rank-413

ing could likely be explained by the high correlation between414

the olfactory sensory information and the molecular graphic415

features of the odorants compared with the other molecular416

descriptors. We found that the AINN-DNN model had the417

highest precision (0.861±0.038, p<0.0001). We confirmed418

that that although more epochs were needed to train the419

ResNet models, the training time was shorter than that for420

the AINN-DNN and MGTNN models. The fast convergence421

speed could contribute to the transfer-learning mechanism.422

Although the number of parameters was abundant for the423

ResNet model, we did not train these parameters, but instead 424

used those from the pre-trained models. The pre-trained 425

models could overcome the limitation of insufficient samples 426

for training DNN models. A similar conclusion was found 427

previously [55]. In summary, we suggest that an end-to- 428

end DNN with molecular graphic features extracted via a 429

pre-trained ResNet is an optimal model for predicting the 430

sensory categories of odorants. 431

3.6. Discussion 432

The accurate and effective prediction of odor sensory 433

categories is vital for developing machine-learning-based 434

GC/O. To develop an olfaction-based sensory system, we 435

need not only bio-sensors to encode odorants (odor receptor 436

imitation), but also a brain-like odor signal decoding algo- 437

rithm. Although many studies have examined SORs, most 438

have focused on predicting ODs [15, 16, 18, 21, 31]. Even 439

though most ODs can be predicted, infrequent ODs were 440

difficult to be identified. For excample, Snitz proposed a 441

mostly perfect result in prediciting 64 smell percepts with 442

100 % precision and 102 smells with 90.35 %, but infre- 443

quent smells, such as almond, apricot and chocolate, had 444

been found to have poor prediction performance [16]. This 445

could be explained by the extreme imbalance in the data 446

distribution, as well as the insufficient number of training 447

samples. Unlike the above-mentioned studies, we want to 448

find useful odorant structure features for odor sensory cat- 449

egories indentification. 450
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Figure 6: Results for odor category determined by atom interaction neural network (AINN) models. The models were evaluated
according to the average identification area under the curve (AUC) (a), precision (b), recall (c), and F1 score (d). The data were
subjected to a nonparametric Wilcoxon signed-rank test.

Table 1
Modeling and training parameters for DNN models calibration.

Model name Input dimension Hidden layers Training epoch Loss Elapsed time (s)

FP-based 2048 6 83±42.3 0.00891±0.000942 32.5±16.6
MP-based 1000 6 91.8±46.1 0.00975±0.000528 36±18

MG-CNN-based 512 6 128±42.6 0.00672±0.000803 51.7±17.3
MGT-NN-based 4096 7 105±49.9 0.0100±0.000469 74.2±42.3

AINN-based 512 6 59±25.2 0.0107±0.000622 117±53.4

Shang and Liu et. al.: Preprint submitted to Elsevier Page 9 of 13



Odorant molecular feature mining by DNNs for odor perception categories prediction

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

**** **** **** **** ****
Kruskal−Wallis, p < 2.2e−16

p = < 2e−16 p = 2.7e−14 p = < 2e−16 p = 2.0e−05 p = < 2e−16

0.70

0.75

0.80

0.85

0.90

0.95

1.00

FPs MPs Pre−trained ResNet AINN−DNN (2D) MGTNN (Atom+Bond)
Models

P
re

ci
si

on

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

**** **** ****  ****
Kruskal−Wallis, p < 2.2e−16

p = <2e−16 p = <2e−16 p = <2e−16 p = 0.06 p = <2e−16

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

FPs MPs Pre−trained ResNet AINN−DNN (2D) MGTNN (Atom+Bond)
Models

R
ec

al
l

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
●
●●
● ● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

**** **** ****  ****
Kruskal−Wallis, p < 2.2e−16

p = <2e−16 p = <2e−16 p = <2e−16 p = 0.05 p = <2e−16

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

FPs MPs Pre−trained ResNet AINN−DNN (2D) MGTNN (Atom+Bond)
Models

A
re

a 
un

de
r 

th
e 

R
O

C
 c

ur
ve

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

**** **** ****  ****
Kruskal−Wallis, p < 2.2e−16

p = <2e−16 p = <2e−16 p = <2e−16 p = 0.55 p = <2e−16

0.60

0.65

0.70

0.75

0.80

0.85

0.90

FPs MPs Pre−trained ResNet AINN−DNN (2D) MGTNN (Atom+Bond)
Models

F
−

sc
or

e

(a)

(c) (d)

(b)

Figure 7: Identification accuracies of DNN models using molecular features extracted via FP-, MP-, MG-CNN-, MGTNN-, and
AINN-based DNN models. The data were evaluated using the nonparametric Wilcoxon signed-rank test.

Table 2
Odor sensory category identification accuracy comparison of DNN models using multi-type of odorant structure features.

Model name AUC-ROC Precision Recall F1 score

FP-based 0.796±0.036 0.82±0.046 0.662±0.029 0.688±0.033
MP-based 0.806±0.033 0.843±0.039 0.658±0.028 0.689±0.031

MG-CNN-based 0.877±0.028 0.822±0.037 0.71±0.028 0.726±0.028
MGT-NN-based 0.804±0.036 0.855±0.036 0.659±0.025 0.692±0.029

AINN-based 0.807±0.035 0.861±0.038 0.662±0.027 0.696±0.030

Here, we focused on establishing relationships between451

molecular features and odor sensory categories via an end-452

to-end learning strategy, which is expected to play a decod-453

ing role in bio-olfaction. The MPs and FPs in the present454

study had poor performance, indicating that focusing solely455

on physiology-chemical parameters could result in the loss456

of some critical information related to olfaction. In contrast457

to relying on tabular features, molecular graph CNNs-based458

features would be more appropriate for learning useful odor459

sensory expression. We also considered a transfer learning460

strategy for dealing with the problem of insufficient train-461

ing samples. Our results confirm that pre-trained CNNs,462

combined with a ‘vanilla’ DNN, can effectively establish463

relationships between molecular features and odor sensory464

categories. Furthermore, our data suggest that molecular465

graphic features are optimal for describing odorant protein466

interactions according to human olfaction. Existing GC/O467

methods have focused on just 8 ODs in one olfaction sen-468

sory evaluation task, as limited by the odor memory of the469

assessors [56–58]. Odor analysis precision is also limited by470

their odor memory. Therefore, the proposed model can apply471

a reliable references for human panlists to reduce trainning 472

cost. 473

This study has several limitations. First, more attention 474

should be focused on atom interaction-based embeddings, 475

although the AINN in the present study had poor perfor- 476

mance. Biological studies have indicated that atom inter- 477

actions play a critical role in mammal olfaction [59–61]. 478

The poor accuracy of the AINN was likely caused by in- 479

sufficient odorants and an inappropriate modeling approach. 480

Moreover, we did not consider the electronic interactions 481

between atoms, which may be suitable for olfaction sensory 482

encoding. Self-supervised strategies combined with proper 483

modeling techniques and trained with abundant molecules 484

merit further investigation. Furthermore, synergism, odor 485

neutralization and the predicatable of a fragrance mixture 486

has still not been quantified [62–64]. In present study, we 487

focus on single odor molecule smell perception prediction, 488

which is not appropriate for modeling odor synergism and 489

neutralization. For fragrance mixture prediction, mass spec- 490

tral would be feasible for model calibration. In the future, 491

we plan to attempt to improve our framework for molecular 492
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structure feature extraction using other algorithms, and to493

try to explore the feasibility of metric modeling using Rie-494

mannian manifolds, such as the Grassmann or symmetric495

positive definite manifold [65, 66]. We expect that it will496

be difficult to find a reasonable algorithm when performing497

metric learning in Riemannian space. However, this is an498

interesting problem for future investigation. In addtion, data499

fusion would also be an effective strategy for increasing the500

accurcay of odor category identification models.501

4. Conclusions502

The SOR by DNNs via the structure features of odorants503

has attracted great attention during the past decade. Due504

to the limited knowledge on binding mechanism between505

odorant molecules and olfactory receptors, however, it is506

not sure what kind of structural features play the most507

important role in smell recognition. Here, we utilized a508

DNN-based multi-label classifier for odor sensory category509

identification using various molecular features. Specifically,510

we examined the possibility of predicting odor categories511

based on molecular parameters, fingerprints, and graphics,512

as well as graph attention network embedding and atom513

interactions. Our results indicated that molecular 2D graphic514

data were strongly related to sensory information about515

olfaction. Extensive experiments confirmed that a ‘vanilla’516

DNN with molecular graphic features, extracted via ResNet,517

was optimal for odor perception category identification. We518

anticipate that transfer learning is a viable and powerful519

technique for modeling the relationships between molecular520

structures and odor perception categories. Our proposed521

approach could be applied in the development of AI-based522

odor sensors. We believe that this study is among the first to523

examine the importance of molecular graphic features when524

establishing relational models between molecular structures525

and odor sensory categories. Our approach may not only526

serve as a realistic solution for introducing AI into olfactom-527

etry, but may also offer a novel perspective for investigating528

the mechanisms of human olfaction.529
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