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Highlights

Odorant molecular feature mining by diverse deep neural networks for prediction of odor
perception categories

Liang Shang,Chuanjun Liu,Fengzhen Tang,Bin Chen,Lianqing Liu,Kenshi Hayashi

o Different deep neural networks were used to predict categorized odor descriptors.
e End-to-end-based representation learning was performed for molecular feature extraction.

e Molecular graphs with pre-training of convolution neural networks was most accurate.
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ABSTRACT

The prediction of structure-odor-relationship (SOR) by deep neural networks (DNN) via the structural
features of odorants has attracted great attention during the past decade. Due to the limited knowledge
on binding mechanism between odorant molecules and olfactory receptors, however, it is not sure what
kind of structural features play the most important role in smell recognition. In this work, diverse
deep neural networks, including molecular parameters neural network (MPNN), molecular graphic
convolution neural network (MG-CNN), molecular graph transformer neural network (MGTNN)
and atom interaction neural network (AINN), were used to extract the structure features of odorant
molecules and to predict the categorized odor perception. We optimized all of the models via
parameter tuning, and evaluated and compared their performance using a database containing 2849
odorants and their corresponding odor sensory category labels. The experimental results demonstrated
that an MG-CNN (pre-trainedResNet) combined with a multi-label DNN classifier produced the best
results, with an area under the receiver operating characteristic curve and F1 score of 0.877+0.028 and
0.726+0.028, respectively. This is the first systematic study for molecular structure features extracted
by different deep neural network and their predictive effect for SOR. We believe that these insights
regarding the use of DNN-based odorant molecular feature extraction for odor sensory identification
will be useful for introducing biologically interpretable artificial intelligence into olfactometry, and

thus contribute to our understanding of the mechanisms underlying human olfaction.

1. Introduction

Identifying the interactions between odorants and sen-
sory descriptions is important for the discovery and analy-
sis of volatile compounds. To obtain the sensory informa-
tion of odor, gas chromatography/olfactometry (GC/O) has
been widely applied as a powerful odor analytic strategy
in various research areas, such as agriculture, food, and
environmental science [1-3]. Although GC/O can be used
to attain accurate sensory and chemical characteristics of
odorants, this approach is expensive and time-consuming,
which can limit its application. The main expense associated
with GC/O is the cost of hiring and training panelists to
characterize the sensory qualities of odorants using their
sense of smell. In addition, the sensory assessment of human
panelists is personally dependent, which inevitably leads to
subjectivity and inconsistency into the evaluation results.

Research on the response patterns of neurons in the
olfactory bulbs (OB) has illuminated the mechanisms under-
lying biological olfaction [4-6]. However, many questions
remain, such as why these molecules smell different from
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one another and why we link smell feelings with certain se-
mantic descriptors, known as odor descriptors (ODs). These
questions may be answered by examining structure odor
relationships (SORs), the development of which presents
a difficult and interesting challenge [7-9]. During recent
years, many researches have been conducted to predict odor
perception of odorants using vairous parameters, such as
electronic or physicochemical characteristics [10, 11], mass
spectrometry (MS) [12, 13], and social network interactions
[14]. Additionally, novel methods, such as odor-based social
networks [15—17], machine learning (ML) [18-20], deep
neural network (DNN) models [21-24], and semantic-based
approaches [25] have been developed to calibrate models
that express the relationships between odorants and ODs.
These studies have demonstrated the possibility to use data-
driven approaches to solve the SOR problems. In line with
this trend, we have proposed a concept of ML-based GC/MS
olfactometry in which the sensory evaluation of panelists
is expected to be replaced by machine learning prediction
models [26].

In the ML-based GC/O system, the molecular informa-
tion obtained by MS analysis of the individual GC peaks
is transfered into physicochemical parameters by molecular
calculation software (DRAGON). By building models ap-
propriately, the ODs of the odorants can be predicted with
high accuracy form their physicochemical parameters. The
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Odorant molecular feature mining by DNNs for odor perception categories prediction

ML-based GC/O is a concept-of-proof study and there are
many problems to be solved before its practical application.
For example, in terms of the sample size, only limited
ODs with high frequency of occurrence are targeted in our
models. In reality, it has been reported that over 500 ODs
are used for odor evaluation [27]. Therefore, many ODs,
especially for those rare ODs are not considered by the
models. In oder to solve this issue, we have recently proposed
a categorization approach based on the semantic analysis
of ODs, which make the model can cover the prediction of
several hundreds of ODs [28]. Another remaining problem
is that the model prediction is based on physicochemical
parameters of odorants. The recent development of com-
putational chemistry and ML make it possible to obtain
various molecular structure information [29]. Unlike tradi-
tional methods, DNNSs can directly learn latent presentations
from molecular structures, such as atom types and their
positions, via back-propagation [30]. Moreover, an end-to-
end strategy has been proposed as an effective nonlinear
modeling method for learning molecular presentation in
many fields, such as quantum chemical properties predic-
tion, and compound-protein interaction identification [31].
However, since detailed binding mechanism between the
odorants and olfactory receptors is still not fully understood,
which molecular features play the most important role in
olfactory perception has not been cleared.

The purpose of this study is dedicated to molecular
feature mining by diverse DNNs for prediction of odor
perception categories. Please note that our work is not to
propose some novel classification frameworks, but using
multi-type of feature extractors to understand the relation-
ship between the structure features of odorants and odor
perception categories. A schematic of the data processing
and modeling procedures is illustrated in Fig. 1. We used
molecular structures, including 2D molecular images and
atom spatial locations, to predict odor sensory categories.
For minding useful information from molecular structures,
some molecular structural feature extraction methods were
empoyed and their results were compared and discussed.
Specifically, we used a molecular graphic convolution neu-
ral network (MG-CNN) and molecular graph transformer
neural network (MGTNN) to extract features from repre-
sentations of molecular structure, such as molecular struc-
ture images and topology graphs. Moreover, we used atom
interaction neural networks (AINNs) to generate features
from the spatial structures of atoms. To overcome limita-
tions related to insufficient samples, we also considered pre-
trained models, such as pre-trained CNNs and MGTNNSs.
We compared the feasibility of SOR prediction via molecu-
lar fingerprints, molecular parameters, and molecular feature
extraction based on MG-CNN, MGTNN, and AINN. We
achieved the highest performance by applying molecular
features extracted via a pre-trained MG-CNN combined
with a mulit-label learning model (area under the ROC
curve: 0.877+0.028 and F1 score: 0.726+0.028). Thus, the
proposed odor sensory category identification model is a

feasible option for developing artificial intelligence (AI)-
based GC/O. Although it would be still a challenge to replace
human assessors by ML models perfectly, the proposed
method could provide references for assessors to increase the
efficiency for odor analysis. Therefore, the limitation of odor
memory would be breaked through by the odor perception
categories recommendated by the proposed method.

2. Materials and methods

2.1. Data collection and preparation

To create an odor category prediction model, we col-
lected an extensive dataset containing 2849 odorants. We
used information from publicly available databases such
as the Odor Map database [32], Flavors and Fragrances
database (Sigma-Aldrich) [33], and the Good Scents database
[34]. As illustrated in Fig. 1, we collected and prepared 5
types molecular descriptors, including molecular parame-
ters, molecular fingerprints, molecular graphs, simplified
molecular input line entry system (SMILES), and atom coor-
dinates. Specifically, we used SMILES and RDKit Software
(ver. 2021.03.1) [35, 36] to collect normalized molecular
parameters (1826, detailed information can be found at [37]),
molecular fingerprints (binary, 2048 bits), and 2D molecular
graphs (RGB, 300x300 pixels). We used RDKit to obtain the
2D and 3D atom coordinates of the odorants, which we used
to train the model regarding the atomic interactions between
odorant structures and their odor sensory categories. In
total, 256 ODs were clustered into 20 categories using a
co-occurrence Bayesian embedding method. More detailed
information regarding the cleaning and categorization of
ODs can be found in Table S1 [28]. Data were processed
and analyzed using Python (ver. 3.9.0) and R (ver. 4.1.1).
Because the diverse molecular representations of odorants,
we need to employ various of feature extraction technologies
to obtain embeddings for model calibration.

2.2. Model calibration

The calibration and validation process for the odor cat-
egory model is shown in Fig. 1. First, all samples were
divided via random splitting into training and test sets with
a 4:1 ratio, and the reported results are averaged over 50
repetitions. Afterward, we employed molecular parameters,
molecular fingerprints, molecular graphic features, molec-
ular graph transformers, and atomic interaction embedding
to extract the molecular features of the odorants (Fig. 2). We
used a DNN approach to develop a multi-label odor category
learning model (the output size was 20) based on the afore-
mentioned molecular information. The cost function £(®) of
the DNN multi-label classifier was calculated by summing
the binary cross-entropy of each class, which was defined as
follows:

N M
1 . .
£©) =~ 2 Z yij xlog(d )+ (1 = y; ;) x log(1 = 3, ;)

i=1 j=1

ey
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where O indicates the parameter set of the model, N
indicates the sample number in the training set, and M
indicates the number of odor categories, set as 20 in the
present study. y; ; and J; ; are the ground truth and prediction
label for category j of sample i, respectively. By minimizing
the cost function based on the stochastic steepest gradient de-
scent algorithm, parameters from the DNN could be learned
and updated. For each DNN method, the number of hidden
layers and nodes was selected from 1 to 8 layers and {16, 32,
64, 128,256, 512, 1024, 2048} nodes, respectively. Network
parameters, including the dropout ratio, learning rate, and
training epoch, were set as 0.1, 1 X 10~#, and 200, respec-
tively. The optimal models were determined according to
their areas under the ROC curve (AUC) and F1 scores based
on precision and recall, simultaneously. Both qualitative and
quantitative data analyses were performed.

Because molecular graphs, molecular SMILES sequences,
and atom coordinates are not tabular data, they cannot be
used as classifier inputs directly. Therefore, diverse fea-
ture extraction methods were firstly employed to convert
those unstructured data to tabular features. Specifically, pre-
trained CNNs, sequence transformer, and atomic interaction
embedding were utilized for moelcular graphs, SMILES
sequences, and atom coordinates features extraction, re-
spectively. Detail information of above-mentioned strategies
were summarized as fllows.

Odorant Odorants from multiple databases (sample size is 2849)
dataset
{ i
Sample set Random split (train:test is 4:1)
partition
A 2 L K 2
Training set Test set
2 2 17 ¥
Feature Molecular Molecular Molecular Atomic
extraction parameters finger prints graphs interactions
T L L . L
Model . .
it Multi-output neural network (ouput size is 20)
i 1
v ;\l/i[gggl)n Odor category predition

Figure 1: Data processing for calibration and validation of an
odor category prediction model.

2.3. Molecular graphic feature extraction

CNNs are highly successful graphic feature extractors,
and are commonly developed with high accuracy by large
training datasets [38]. Given the utility of convolution ker-
nels and DNNs, CNNs have played a critical role in image
and video processing [39]. Recently, molecular graph em-
bedding has been used to model the relationships between
chemical compounds [31]. To investigate the feasibility of
molecular graphic presentation for odor category prediction,
we used 4 types of effective CNNs, including the VGG-
16, Restnet, Densnet, and Alexnet, as feature extractors for
generating embedding from molecular images in the present

study (Fig. 2a). Detailed structures for these CNNs have
been previously presented [40—43]. In the present study, we
used pre-trained CNN models for odor category prediction
to overcome the limitation of sample size.

2.4. Molecular sequence feature extraction

As an end-to-end supervised learning algorithm, graph
neural networks (GNNs) have been widely applied for se-
quence embedding in various fields [44]. Given that odor-
ants can be described as molecular topology graphs us-
ing SMILES, we considered GNNs to be appropriate for
molecular presentation. Broadly speaking, graph transform-
ers are considered to be a powerful tool for handling molec-
ular presentation through encoding via SMILES, which has
been used to predict compound protein interactions, virtual
screening, and molecular parameters [45].

Although the molecular graph transformer neural net-
work (MGTNN) has strong potential for molecular model-
ing, deep learning models always require a large amount
of labeled data for training [46]. To overcome the above
problems, we used a self-supervised graph transformer
(GROVER) to obtain presentation information from the
odorants for odor category prediction. A briefly description
of the GROVER is given in Fig. 2b. The pre-training archi-
tecture was mainly composed of two parts: i) a transformer-
based neural network, and ii) a GNN for molecular structure
extraction [46]. The input of the model was an odorant graph
presentation G = (V, E), where V' was the set of atoms and
E was the set of bonds. Specifically, v; € V ande; ; € E
were the i-th atom and bond between the i-th and j-th atom,
respectively. The GNN was designed to embed extraction
according to queries (Q), keys (K), and values (V') from the
atoms in molecular graphs (G). The message transmission
process of the GNN, as well as the neighborhood aggression
between an atom (v) and its neighbors (N, ») 1n an odorant
(G), were adopted to iteratively (L) update hidden states (h,,)
for atom v, which can be written as:

mg”‘) = Aggregate(’)({(h(ul’k_l), hf{”k_l), e, )lue N}
Lk) _ 1. (l.k !

R = oW ml + pD)
hg = Readout({hS", ... A" v e v))

@

where mf)l’k) indicates the passing message for atom v

under the k-th step of the /-th iteration. Here, we suppose
each iteration (/) contains K, steps. Aggregate)(-) is an
aggregation function, which can be selected from the mean,
max pooling, or graph attention mechanism. o(-) is the
activation function, and hg; is the graph-level representation
generated by a Readout operation. The resulting matrices
(Q,K,V) were fed to the transformer module, which was
composed of graph multi-head attention blocks:

MultiHead(Q, K, V') = concat(head,, head,, ..., headk)WO
head; = Attention(QW,%, KW,X,. v W")
Attention(Q, K, V) = softmax(QK” /\/d)V
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Figure 2: Overview of the design of molecular feature extractors, including (a) a molecular graphic convolution neural network
(MG-CNN), (b) molecular graph transformer neural network (MGT-NN), and (c) atom interaction neural network (AINN).

3

where I’ViQ, VViK , I'Vl.V are the projection matrices of
head,. d indicates the dimension of q and k.

The self-supervised learning tasks in the present study
were assigned as contextual property prediction, and graph-
level motifs, as well as molecular components, were used
to predict links between both nodes and edges. In summary,
we employed a pre-trained model, calibrated with 10 million
molecules, as a molecular topology feature extractor in the
present study. Instances of atom embedding (2048 dimen-
sions) and bond embedding (2048 dimensions) generated by
the above-mentioned procedure were used for odor category

prediction. This simple strategy has been demonstrated to be
a powerful method in terms of graph expression and struc-
ture information extraction [47]. Details regarding graph
transformers can be found elsewhere [48].

2.5. Atomic interaction embedding

Numerous studies have confirmed that atom interac-
tions are crucial to odor perception [49, 50]. Consequently,
molecular features generated by atomic interactions may be
feasible for odor category prediction. In the present study, we
modeled interactions between atoms in an odorant molecule
using a DNN-based model as a molecular feature extractor.
A brief description of the process for the AINN is given

Shang and Liu et. al.: Preprint submitted to Elsevier
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'A/atom

=1
where a; is the i-th atom type, ¢; € R20rR3 is the coordinate
vector of the i-th atom, and N, is the total number of

atoms for the odorant. To obtain an atom embedding descrip-

in Fig. 2c. Formally, given an odorant O = {(a;,c;)}

tion for the odorant, Vo = {(v;, c[)}f\zf’i"”", where v; € R?
is the embedded vector for the i-th atom. The embedding
dimensionality d is a hyper-parameter that must be assigned
before training, and these atom embeddings were initialized
randomly and optimized via back propagation. To select
the update strategy for the above-mentioned embeddings,
we referred to the previous use of DNNs with common
graph-structured datasets [51, 52]. Accordingly, the atom
embeddings were updated as follows:

(+1) _ ! O pd (D)
v,’ _f(v,)+ Z g(vj ’I)i,j’ai,j)
JjEO\I
() @ D g
Pi,j = f(Ui ,vj ,dlsli,j) 4)
0 _ (OO RR
;= f, V) ,dzst[,j)

dist; ; = ||¢; — ¢;l|

where f(-) and g(-) were the neural networks. Pi(i.) eR

and al(l) € R indicate the potential volume and interaction
factor between the i-th and j-th atoms at the /-th hidden
layer, respectively. dist; ; € R was the Euclidean distance
between the i-th and j-th atoms. Thus, the atom interaction
embeddings for the odorant (xo € R%) could be calculated
by:

X = Aggregate({v; }Z”""”) ©)

where Aggregate(-) was the aggregate function, which
was mean pooling in the present study. As an option, we
added a residual part to prevent the vanishing gradient
problem in the DNN (res-AINN), which could be defined
as follows:

vV = Norm(r@wh+ g(vj.”, Py, af‘j)) +vl) ©)
JEO\I

: . Nsample
Finally, the odorant embeddings Xo = {xo },_| i
were selected as inputs for subsequent models. In this study,
the hyper-parameters L, dimensions of embeddings d, learn-
ing rate 7, and learning epochs were selected as 6, {32,
64, 128, 256, 512, 1024}, 0.001, and 200, respectively. We
considered the feasibility of using molecular 2D and 3D
coordinates, and discussed the embedding results. Detailed
information regarding atom interaction embedding can be
found in other publications [29].

3. Results and discussion

3.1. Data analysis
We employed five different molecular structure repre-
sentations, including odorant molecular parameters (MP),

molecular fingerprints (FP), pre-trained molecular graphic
embeddings, pre-trained molecular graph transformer em-
beddings, and atom interaction embeddings in the present
study. First, we visualized the numeric vectors in low-
dimensional space using Barnes-Hut t-distributed stochastic
neighbor embedding (t-SNE) as an unsupervised statistical
method. This method has been widely applied for high-
dimensional data visualization [53]. The t-SNE presentation
of the odorants based on the above-mentioned vectors is
illustrated in Fig. 3 and Fig. S1. As reported in previous
studies, each odorant contained multi-odor category labels
[15, 16, 26, 28, 30]. Therefore, the distribution of odor
categories was visualized using colors representing alpha
values. Molecular graphic features extracted by Restnet (Fig.
3c) produced a better result than other molecular features
because most odorants from the same odor category are
clustered together. In contrast, odor cluster overlapping was
observed more frequently in the t-SNE map generated from
molecular fingerprints (Fig. 3a), molecular parameters (Fig.
3b), and molecular graph transformers (Fig. 3d). Molecular
graphs generated from four combined types of pre-trained
CNNs produced competitive results compared with other
molecular descriptors (Fig. S1). This result demonstrates
that odor categories are likely to be more strongly related
to molecular graphs than other descriptors. Therefore, we
inferred that an odor category identification model based on
molecular graphic features would be superior.

3.2. Molecular graphic CNN-based feature
analysis

Fig. 4 and Table S2 summarize the performance met-
rics of the odor category identification model based on
molecular graphic feature extraction. The details of model
calibration, including the optimal epochs, training loss,
and elapsed time, are illustrated in Table 1 and Fig. S2.
The pre-trained RestNet with DNNs (6 hidden layers) per-
formed significantly better than the other models, with
the highest AUC (0.877+0.028, p<0.001) and F1 score
(0.72540.0278, p<0.001) on the test sets. It was followed by
the DenseNet (4 hidden layers, AUC 0.87640.029, F1 score
0.716+0.035), VGG (6 hidden layers, AUC 0.875+0.028,
F1 score 0.716+0.033), and AlexNet (5 hidden layers, AUC
0.873+0.029, F1 score 0.723+0.033). The deep residual
framework of the most successful model may have overcome
the degradation problem that affects deep networks [42].
In addition, the number of hidden layers in the DNN did
not play a necessary role in tuning the pre-trained CNN
model. To verify the abilities of the models for transfer
learning, we compared the prediction performances of the
CNNs depending on whether they were pre-trained. These
results are illustrated in Fig. 4. We found that the pre-
trained models had significantly (p<0.001) higher accuracy
compared with the models with un-trained CNNs. This
indicates that CNNs could learn universal image feature
extractors through training with a large dataset (ImageNet).
This conclusion is supported by previous research [54].
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Figure 3: Odorant clustering using Barnes-Hut t-distributed stochastic neighbor embedding (t-SNE) based on (a) molecular
fingerprints, (b) molecular parameters, and (c) molecular graphic features extracted via a pre-trained Restnet and (d) molecular
graph transformer method based on the links between atoms and bonds. tSNE-1 and tSNE-2 were calculated using the t-SNE
method. Each point indicates an odorant, colored according to its odor category labels, and the distributions of odor categories

are given by the alpha values corresponding to the colors.

3.3. Molecular graph transformer based feature
analysis

A summary of the identification accuracy of the MGTNN
models is given in Fig. 5 and Table S3. The optimal training
epoch, loss, and elapsed time for the MGTNN models are
presented in Table 1 and Fig. S3. When the selected atom
and bond embeddings were included with 7 hidden layers,
the MGTNN model had the highest AUC (0.813+0.035)
and F1 score (0.696+0.032) in the test set. In addition, the
AUC values for the models independently trained via atom
or bond embeddings were 0.812+0.031 and 0.810+0.030,

respectively. However, the data were not sufficient to con-
clude that considering atoms and bonds together produced
a significantly more accurate result than when they were
included individually (p>0.001).

3.4. Atom interaction-based feature analysis

Fig. 6 and Table S4 compares odor sensory category
identification according to the molecular features extracted
by AINNS . The results indicated that the AINN-DNN model
(2D, 512 embedded dimensions) had the highest identifica-
tion performance in terms of the AUC and F1 score, which
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Figure 4: Identification performance of four molecular graphic convolution neural network (MG-CNN) models: AlexNet, VGG,
DenseNet, and ResNet. The models were evaluated according to the average identification AUC (a), precision (b), recall (c), and
F1 score (d). Results were evaluated using the nonparametric Wilcoxon signed-rank test.

were 0.807+0.035 (p<0.01) and 0.696+0.023, respectively.
However, we cannot claim that the molecular 2D coordi-
nates were better for identification than the 3D coordinates
because the analyses for both had a high p-value. Further-
more, the models with residual modules did not exhibit a
significant increase, likely because the vanishing gradient
is not the critical obstacle limiting AINN performance. In

addition, the dimension of atom embedding vectors did not
have a significant effect on the accuracy of odor category
identification. The optimal training epoch, loss, and elapsed
time for AINN models are listed in Table 1 and Fig. S4.
We found that the modeling time for 2D coordinates was
significantly smaller than that for 3D coordinates (p<0.001).
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This suggests that the presented AINN models do not need
spatial embedding for odor sensory identification.

3.5. Performance comparison

To identify the model with the best comprehensive
performance for odor category identification, we compared
the five types of models in terms of performance metrics, as
presented in Fig. 7 and Table 2. Table 1 and Fig. S5 illustrates
the optimal training epoch, loss, and elapsed time for the
above-mentioned models. The predicted accuracies for each
odor sensory category are summarized in Fig. S6-S10.
The results confirmed that the model trained using molec-
ular graphic features extracted via a pre-trained ResNet
had significantly better performance than the other models
(AUC 0.877+0.028, F1 score 0.726+0.028, p<0.0001),
followed by the AINN-DNN (AUC 0.807+0.035, F1 score

0.696+0.030), MPs (AUC 0.806+0.033, F1 score 0.689+0.031),

MGTNN (AUC 0.804+0.028, F1 score 0.692+0.029), and
FPs (AUC 0.796+0.036, F1 score 0.688+0.033). This rank-
ing could likely be explained by the high correlation between
the olfactory sensory information and the molecular graphic
features of the odorants compared with the other molecular
descriptors. We found that the AINN-DNN model had the
highest precision (0.861+0.038, p<0.0001). We confirmed
that that although more epochs were needed to train the
ResNet models, the training time was shorter than that for
the AINN-DNN and MGTNN models. The fast convergence
speed could contribute to the transfer-learning mechanism.
Although the number of parameters was abundant for the

ResNet model, we did not train these parameters, but instead
used those from the pre-trained models. The pre-trained
models could overcome the limitation of insufficient samples
for training DNN models. A similar conclusion was found
previously [55]. In summary, we suggest that an end-to-
end DNN with molecular graphic features extracted via a
pre-trained ResNet is an optimal model for predicting the
sensory categories of odorants.

3.6. Discussion

The accurate and effective prediction of odor sensory
categories is vital for developing machine-learning-based
GC/O. To develop an olfaction-based sensory system, we
need not only bio-sensors to encode odorants (odor receptor
imitation), but also a brain-like odor signal decoding algo-
rithm. Although many studies have examined SORs, most
have focused on predicting ODs [15, 16, 18, 21, 31]. Even
though most ODs can be predicted, infrequent ODs were
difficult to be identified. For excample, Snitz proposed a
mostly perfect result in prediciting 64 smell percepts with
100 % precision and 102 smells with 90.35 %, but infre-
quent smells, such as almond, apricot and chocolate, had
been found to have poor prediction performance [16]. This
could be explained by the extreme imbalance in the data
distribution, as well as the insufficient number of training
samples. Unlike the above-mentioned studies, we want to
find useful odorant structure features for odor sensory cat-
egories indentification.
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Figure 6: Results for odor category determined by atom interaction neural network (AINN) models. The models were evaluated
according to the average identification area under the curve (AUC) (a), precision (b), recall (c), and F1 score (d). The data were
subjected to a nonparametric Wilcoxon signed-rank test.

Table 1

Modeling and training parameters for DNN models calibration.

Model name Input dimension  Hidden layers  Training epoch Loss Elapsed time (s)
FP-based 2048 6 83+42.3 0.00891+0.000942 32.5+16.6
MP-based 1000 6 91.8+46.1 0.00975+0.000528 36+18

MG-CNN-based 512 6 128+42.6 0.00672+0.000803 51.7+17.3
MGT-NN-based 4096 7 105+49.9 0.0100+0.000469 74.2+42.3
AINN-based 512 6 59+25.2 0.0107+0.000622 117+53.4
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Figure 7: Identification accuracies of DNN models using molecular features extracted via FP-, MP-, MG-CNN-, MGTNN-, and
AINN-based DNN models. The data were evaluated using the nonparametric Wilcoxon signed-rank test.

Table 2
Odor sensory category identification accuracy comparison of DNN models using multi-type of odorant structure features.
Model name AUC-ROC Precision Recall F1 score
FP-based 0.796+0.036  0.82+0.046  0.662+0.029 0.688+0.033
MP-based 0.806+0.033 0.843+0.039 0.658+0.028 0.689+0.031
MG-CNN-based 0.877+0.028 0.822+0.037  0.71+0.028  0.726+0.028
MGT-NN-based 0.804+0.036 0.855+0.036 0.659+0.025 0.692+0.029
AINN-based 0.807+0.035 0.861+0.038 0.662+0.027 0.696+0.030

Here, we focused on establishing relationships between
molecular features and odor sensory categories via an end-
to-end learning strategy, which is expected to play a decod-
ing role in bio-olfaction. The MPs and FPs in the present
study had poor performance, indicating that focusing solely
on physiology-chemical parameters could result in the loss
of some critical information related to olfaction. In contrast
to relying on tabular features, molecular graph CNNs-based
features would be more appropriate for learning useful odor
sensory expression. We also considered a transfer learning
strategy for dealing with the problem of insufficient train-
ing samples. Our results confirm that pre-trained CNNs,
combined with a ‘vanilla’ DNN, can effectively establish
relationships between molecular features and odor sensory
categories. Furthermore, our data suggest that molecular
graphic features are optimal for describing odorant protein
interactions according to human olfaction. Existing GC/O
methods have focused on just 8 ODs in one olfaction sen-
sory evaluation task, as limited by the odor memory of the
assessors [56—58]. Odor analysis precision is also limited by
their odor memory. Therefore, the proposed model can apply

a reliable references for human panlists to reduce trainning
cost.

This study has several limitations. First, more attention
should be focused on atom interaction-based embeddings,
although the AINN in the present study had poor perfor-
mance. Biological studies have indicated that atom inter-
actions play a critical role in mammal olfaction [59-61].
The poor accuracy of the AINN was likely caused by in-
sufficient odorants and an inappropriate modeling approach.
Moreover, we did not consider the electronic interactions
between atoms, which may be suitable for olfaction sensory
encoding. Self-supervised strategies combined with proper
modeling techniques and trained with abundant molecules
merit further investigation. Furthermore, synergism, odor
neutralization and the predicatable of a fragrance mixture
has still not been quantified [62—-64]. In present study, we
focus on single odor molecule smell perception prediction,
which is not appropriate for modeling odor synergism and
neutralization. For fragrance mixture prediction, mass spec-
tral would be feasible for model calibration. In the future,
we plan to attempt to improve our framework for molecular
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structure feature extraction using other algorithms, and to
try to explore the feasibility of metric modeling using Rie-
mannian manifolds, such as the Grassmann or symmetric
positive definite manifold [65, 66]. We expect that it will
be difficult to find a reasonable algorithm when performing
metric learning in Riemannian space. However, this is an
interesting problem for future investigation. In addtion, data
fusion would also be an effective strategy for increasing the
accurcay of odor category identification models.

4. Conclusions

The SOR by DNNSs via the structure features of odorants
has attracted great attention during the past decade. Due
to the limited knowledge on binding mechanism between
odorant molecules and olfactory receptors, however, it is
not sure what kind of structural features play the most
important role in smell recognition. Here, we utilized a
DNN-based multi-label classifier for odor sensory category
identification using various molecular features. Specifically,
we examined the possibility of predicting odor categories
based on molecular parameters, fingerprints, and graphics,
as well as graph attention network embedding and atom
interactions. Our results indicated that molecular 2D graphic
data were strongly related to sensory information about
olfaction. Extensive experiments confirmed that a ‘vanilla’
DNN with molecular graphic features, extracted via ResNet,
was optimal for odor perception category identification. We
anticipate that transfer learning is a viable and powerful
technique for modeling the relationships between molecular
structures and odor perception categories. Our proposed
approach could be applied in the development of Al-based
odor sensors. We believe that this study is among the first to
examine the importance of molecular graphic features when
establishing relational models between molecular structures
and odor sensory categories. Our approach may not only
serve as a realistic solution for introducing Al into olfactom-
etry, but may also offer a novel perspective for investigating
the mechanisms of human olfaction.
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