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Abstract

As the most primitive sense, olfaction plays an essential role in our daily lives, which pro-
vides us an opportunity to explore our chemical environment. Progress in the molecular biol-
ogy of olfaction has revealed a close relationship between the structural features of odorants
and the response patterns they elicit in the olfactory bulb. Molecular feature-related response
patterns, termed odor maps (OMs), may represent information related to basic odor quality.
To understand the structure-odor relationship is very helpful for clarifying the mechanism
of bio-olfaction and developing olfaction-inspired odor sensors. Accordingly, this research
aims for exploring the relationship between olfaction information and molecularly informa-
tion of odorants, and developing a molecular recognized optical sensor platform for volatile
organic compounds (VOC) detection and identification. This dissertation consists of seven
chapters and the chapter outlines are described as follows:

Chapter 1 composed the background of the present study. The general introductions on
the mechanism of bio-olfaction model and odor sensors were reviewed. Also, the basic char-
acteristics and mechanism of localized surface plasmon resonance (LSPR) and molecularly
imprinted sol-gels (MISGs) were presented.

Chapter 2 explored the correlation between OMs and the molecular parameters (MPs)
of odorants by taking OMs from rat olfactory bulbs and extracting feature profiles of the
corresponding odorant molecules. Correlation analysis between the two matrixes was first
carried out by establishing coefficient maps. Results from hierarchical clustering showed
that all parameters could be segregated into seven clusters, and each cluster showed a rela-
tively similar response pattern in the olfactory bulb. Using the information from the OMs
and MPs, we mapped odorants in 2D space by incorporating dimension-reducing techniques
based on principal component analysis (PCA) and t-distributed stochastic neighbor embed-
ding (t-SNE). Artificial neural network models based on the OM and MP feature values were
proposed as a means to identify odorant functional groups. An OM-PCA-based model cali-
brated via extreme learning machine (ELM) was 94.81% and 93.02% accuracy for the cali-
bration and validation sets, respectively. Similarly, an MP-t-SNE-based model calibrated by
ELM was 86.67% and 93.35% accuracy for the calibration set and the validation set, respec-

tively. This research supports a structure-odor relationship from a data-analysis perspective.
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Chapter 3 presented a proof-of-concept model by which odor information can be ob-
tained by machine-learning-based prediction from MPs of odorant molecules. The features
of the MPs were extracted via either unsupervised or supervised approaches and then used as
input to calibrate machine-learning models. Predictions were performed by various machine-
learning approaches. A support vector machine model combined with feature extraction by
Boruta (confirmed only) was found to afford the best results with an accuracy of 97.08%.
The result indicated that odor descriptors can be predicted by machine-learning-based mod-
els from MPs.

Chapter 4 explored a possibility to use LSPR of Au nanoparticles (AuNPs) and MISGs as
the sensitive layer to recognize typical organic acid odorants. The LSPR layer was prepared
by vacuum sputtering of AuNPs on a glass substrate and consequently thermal annealing.
The sensitive layer was fabricated by spin-coating molecularly imprinted titanate sol-gel on
the AuNPs layer. For the MISG coated sensors, the LSPR sensitivity was affected by the
spin coating speed. In addition, a sensor array based on MISGs with different templates
was constructed to detect the organic acids in single and their binary mixtures. A 100%
classification rate was achieved by leave-one-out cross-validation technique for linear dis-
criminant analysis model. It demonstrated that the MISGs coated LSPR sensor array has a
great potential in organic acid odor recognition of human body odor.

Chapter 5 developed a sensitive and selective nanocomposite-imprinted, LSPR sensor
for cis-jasmone vapor. The functional monomer and the ratio of matrix materials to func-
tional monomers in the MISGs were investigated and optimized. MISGs that contained the
functional monomer trimethoxyphenylsilane at a 3:1(v:v) ratio exhibited a higher sensitivity
and selectivity than other films.

In Chapter 6, AuNPs were doped in the MISG to enhance the sensitivity of the LSPR
sensor through hot spot generation. The size and amount of AuNPs added to the MISG
were investigated and optimized. The sensor coated with the MISG containing 20 pL of
30-nm AulNPs exhibited higher sensitivity than that of the sensors coated with other films.
Furthermore, an optical multi-channel sensor platform containing different channels that
were bare and coated with four types of MISGs was developed to detect plant VOCs in
single and binary mixtures. k-nearest neighbor model had good potential to identify plant
VOCs quickly and efficiently (96.03%). This study demonstrated that an LSPR sensor array
coated with an AuNP-embedded MISG combined with a pattern recognition approach can
be used for plant VOCs detection and identification.

Chapter 7 summarized the experimental works and concludes the dissertation with rec-

ommendations for future work.
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Chapter 1
Introduction

“Did you ever measure a smell? Can you tell whether one smell is just twice strong as
another? Can you measure the difference between two kinds of smell and another? It is
very obvious that we have very many different kinds of smells, all the way from the odour
of violets and roses up to asafetida. But until you can measure their likeness and
differences, you can have no science of odour. If you are ambitious to find a new science,

measure a smell.”

Alexander Graham Bell, 1914

1.1 Olfaction and olfaction system

As the most primitive sense, olfaction plays an essential role in our daily lives [1]. Although
olfaction has been considered of secondary importance to senses (such as vision or hearing)
for a long time, it is recognized as one of the most necessary senses recently [2, 3]. Over
400,000 chemicals are known to produce a sense of smell in people. Recent research has
reported that we can discriminate more than 1 trillion olfactory stimuli [4]. The mechanism
through which olfactory perception is achieved remained basically unknown until Richard
and Buck discovered odorant receptors and described the organization of the olfactory system
[5, 6]. They found a large gene family contained 1,000 different genes that give rise to an
equivalent number of olfactory receptor (OR) types. In addition, these ORs are located on the
olfactory receptor cells, which occupy a small area in the upper part of the nasal epithelium
and detect the inhaled odorant molecules [7]. Since then, our knowledge regarding olfactory
perception, particularly at the molecular level, has grown significantly [8—10].

Research into the response patterns of neurons in the olfactory bulb (OB) has helped clar-
ify the mechanism of biological olfaction [11]. The first relay station of the olfactory system
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is OB, which has a cortical structure with distinct layers and numerous glomerular modules
[12]. Asillustrated in Figure 1.1, olfactory stimuli (odorant molecules) are typically volatile
chemicals that connected with ORs on olfactory sensory neurons in the olfactory epithelium
[13]. These chemicals are firstly absorbed on the mucus in nasal cavity, and detected by the
olfactory cilia in ORs. Then, the signal is sensed and processed by the OB. Finally, molec-
ular features of odorants have been shown to be represented by spatiotemporal patterns of
activity across olfactory sensory neurons in the OB [14, 15]. Odorants are discriminated and
recognized in mammal brains through analysis of these glomerular activity patterns (odor
maps) [16, 17].

I f\l;s_al ---------------------------------- Odorant
: * * . © . o * .;—-—molecules

¢~ «— Mucus

olfaaoryOOO@OOOO@OOOOOO
epithelium

Olfactory

________ receptor

Olfactory

neurons

Olfactory
bulb

Odor map

Fig. 1.1 Schematic diagram of olfaction.

By imaging the 2-deoxyglucose uptake in rat glomeruli, Johnson and his team systemat-
ically mapped spatially odorant-evoked activity into two dimensional (2D) images for more
than 300 odorants [18], and these odor maps now comprise a database (OdorMapDB) that
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can be freely accessed (http://gara.bio.uci.edu/) [19]. They concluded that clustering re-
sponses on the glomerular surface to the molecular features of odorants is likely a general
strategy for odor encoding [20]. For example, responses in odor map shift progressively
according to odorant carbon chain length. Besides, functional groups, include alicyclic, es-
ter, carboxyl, ketone, aromatic, and alkane, have their feature response area in the odor map
[21]. Although odor maps can be affected by the concentration of stimuli chemicals, their
z-score patterns are similar [22]. It indicated that normalized odor maps are only depended
on chemical’s structure. Additionally, Mori et al. have summarized nine molecular-feature
clusters that they found at stereotypical OB positions [23].

Research into the molecular biology of olfactory perception has revealed a close rela-
tionship between the structural features of odorants and their olfactory perception. For ex-
ample, functional groups and carbon-chain length play central roles in odor perception [24].
Therefore, to understand the structure-odor relationship is very helpful for clarifying the

mechanism of bio-olfaction.

1.2 Structure-odor relationship

Much effort has been focused on clarifying the structure-odor relationship using structural,
topological, geometrical, electronic, and physicochemical parameters of odorant molecules.
For measuring the similarity between two odorants, a vector containing 1,664 descriptors
is applied to describe the structure or shape of molecules, and the physicochemical space
(principal component space) is used to evaluate the “distance” between them [24]. Further,
mass spectra and infrared absorption spectra are used to encode odors via artificial neural
networks or self-organizing maps [25]. Sobel et al. related these two spaces to each other and
find that the primary axis of perception (defined as odor pleasantness), reflects the primary
axis of physicochemical features [26]. Kumar et al. developed a network based approach
(smell network) which can be used to explore the perceptual universe and prove the under-
lying similarity of percepts [27, 28]. Keller et al. established a machine-learning algorithm
using a large olfactory psychophysical data set, which can be used to predict odor intensity,
pleasantness, and semantic descriptors from chemical features of odor molecules [29]. How-
ever, olfaction is extremely complex, and a complete understanding of the structure-odor
relationship has yet to be realized. Despite efforts have been made to measure smell, none
can describe all pertinent aspects of olfactory perception [30], and the results are difficult to
explain without knowledge of biology [31].

Finding basic odors is difficult because the numbers of olfactory receptors and odorants

are very large. While most studies focus on attempting to connect odorant physicochemical
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properties to olfactory perception [32], objective information such as OB response patterns
has rarely been considered. Nevertheless, studying the relationship between olfactory re-
sponse patterns and the structural features of odorants can be helpful in understanding the
mechanisms underlying olfactory perception and for predicting the structure-odor relation-
ship [33].

1.3 Odor detection method

1.3.1 Gas chromatography/mass spectrometer

As the most excellent gas analytical method, Gas chromatography/mass spectrometer (GC/MS)
can offer both high accuracy and sensitivity for the analysis of highly complex mixtures of
compounds [34, 35]. In GC part, molecules can be separated from a mixture base on their
relative affinity (retained time) for the stationary phase of the column. MS was used to cap-
ture, ionize, accelerate, deflect, and detect the ionized molecules separately. By breaking
each molecule into ionized fragments to obtain the mass-to-charge ratio, molecules can be
detected and distinguished. As illustrated in Figure 1.2, combined with solid phase micro
extraction (SPME) method, gas/odor sample can be easily detected and analyzed by GC/MS.
GC/MS has been widely used in in several areas, such as medicine, food and fragrance anal-
ysis and biological analysis [36]. However, GC/MS is not suitable for on-line detection
because of its high-cost, time-consuming and bulky size etc. [37]. Therefore, sensors need

to be explored for odor sensing.
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Fig. 1.2 Schematic diagram of SPME-GC/MS.
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1.3.2 Gas chromatography-olfactometry

Gas chromatography-olfactometry (GC-O) has been developed as a powerful tool in the field
of odor research because of the coupled performance of gas chromatographic analysis with
human panelist sensory detection (Figure 1.3) [38, 39]. GC-O can work not only as an
instrumental analysis to identify and quantify complex odor mixtures, but also as a sensorial
analysis to assess odor or odor-active compounds within the GC effluents [40]. In GC-O
analysis, the eluted substances are perceived simultaneously by two detection systems; one
is a MS system and the other is the human olfactory system [41, 42]. Evaluation by a human
sniffer plays an important role because it can make up for deficiencies of GC (or GC/MS)
in odor analysis [43]. For example, many of peaks detected by GC for an odor mixture
may not actually contribute to our perception since they are present below our thresholds for
detecting them. Conversely, some compounds may not show up as detectable GC peaks, but
may have a low perception threshold and contribute substantially to a sample’s profile. The
sensory evaluation of smells by trained panelists can overcome such problems and represents
a valid approach to odor assessment. Through sniffing GC effluent components, panelists can
determine the odor characteristics ascribed to each individual component, which is important

information for the overall odor analysis [44].
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Fig. 1.3 Schematic diagram of GC-O.

A major problem of GC-O is the subjectivity of assessors at the intra- and inter- indi-
vidual level. Sensory assessment of smells by panelists is influenced by many factors, such
as the testing environment, experimental bias, assessor sensitivity, assessor selection, and
training [45]. Experimental conditions should be well established to ensure accuracy and
precision of the odor descriptor data collected by the panelist. Therefore, although GC-O
has presented many challenges not considered on typical GC analysis, its application and

promotion are hindered by the variability, high technical requirements, and high costs of the
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trained panelist [46—48]. Some software modules have been designed and applied in GC-O
as a supplement to odor and chemical analysis. For example, AroChemBase (Alpha MOS)
consists of the most comprehensive chemical and sensory library ever, which is convenient
for fast sensory profiling and detailed chemical/odor characterization. In this kind of soft-
ware module, however, the number of compounds with odor descriptors (around 2000) is far
less than that of the total compound pool (around 44000). Therefore, regardless of human as-
sessment or software indexing, the question of how to effectively obtain sensory information

for eluted compounds from GC is still unanswered for GC-O.

1.3.3 Gas sensors

Except instrument analyzation, odorants can also be detected by chemical sensors. Basically,
chemical sensors are mainly consisted by transducers and sensing materials [49]. Based on
the physico-chemical interaction between volatile compound molecules and sensitive mate-
rial coated on a transducer, odor can be detected and recorded [50]. Varity of sensors are
reported, such as metal oxide semiconductor (MOS), conducting polymer, quartz crystal
microbalance (QCM), and semiconductors base gas sensors [51-54].

MOS sensors play a critical role in gas sensors [55]. As illustrated in Figure 1.4, gas
molecules can be detected by the resistance change of dioxide (such as SnO,, ZnO, In,0;
and WO;) upon exposure to a trace concentration of reducing or oxidizing gases [56]. In air,
donor electrons can be attracted toward oxygen on the surface of the sensing film to prevent
electric current flow. When the dioxide exposed in gas, the surface density of oxygen is de-
creased by reacting with the gases. Therefore, the electrons can be released into the dioxide
layer to increase current flowing through the sensor. Because nanostructures with high sur-
face area are employed to enhance the sensitivity, various oxide nanostructures have been
explored for MOS sensor development [57]. MOS sensors have been widely used to detect
H,, O,, alcohol and harmful gases, such as CO and Cl, [58, 59]. Liu et al. demonstrated
the use of SnO, nanomembranes for high sensitivity and fast response-recovery for acetone
vapor detection [60]. Chen et al. recently developed a new Pd/HfO,/GaN MOS-type sen-
sor for hydrogen sensing with good sensing performance and lower detection limit [61]. Li
et al. reported a successful decoration of ZTO NPs on the surface of RGO nano sheet for
ethanol-sensing. The sensitivity and response to ethanol vapor were observably enhanced
[62]. The main advantages of MOS sensors are fast response and recovery speed, inexpen-
sive, and easy to fabricate [63, 64]. However, high operating temperatures (200-400 °C) are
limited their applications. Besides, sulphur poisoning and ethanol would be generated by
MOS sensors.
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Fig. 1.4 Schematic diagram of MOS sensors.

Chemiresistors are the most common type of sensors for gas sensing, which can be easily
fabricated through a cheap and convenient process [65—67]. Conducting polymers have been
used as the active layers for gas sensor developing [68, 69]. As illustrated in Figure 1.5, by
spin coating, drop-coating, dip-coating or vapor deposition polymerization, conduct poly-
mer film can be established on the surface of interdigitated electrodes [70]. In addition,
conduct polymer composites consist of conducting particles, such as polypyrrole or carbon
black, have been used for enhancing sensitivity and selectivity [71]. When the sensor is ex-
posed to gases, molecules permeate into the polymer layer and causes the film to expand,
which induced an increase in the electrical resistance [72]. Jia et al. developed a flexible
gas sensor with PPy for in situ detections for ammonia with limit of detection as 1.2 ppm
[73]. Khalil et al. reported a transparent conducting polymer AuNPs nanocomposite thin
films for organic gases detection [74]. Ghoorchian et al. presented a sensitive chemiresistor
gas sensor modified with nanostructured PPy to detection of TNT with a high sensitivity and
good selectivity [75]. Conducting polymers can be synthesized through chemical or electro-
chemical processes easily and their molecular chain can be modified with copolymerization
or structural derivations [76]. They offered many advantages over other materials, such as
high sensitivities, short response time and stable at room temperature [77, 78]. However,
aging problem limited their applications.
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Fig. 1.5 Device configuration of conducting polymer films coated chemresistor sensor.

The other widely used gas sensors are QCM sensors. As shown in Figure 3.5, their sens-
ing principle is the variation of frequency of a crystal based oscillator circuit due to the mass
deposition on the crystal [79]. Sorbent coating materials (such as polymeric materials) are
necessary for QCM sensors. By designing these coating materials, the vapors of interest and
capable to detect in part per billion (ppb) level [80, 81]. Liu et al. demonstrated QCM sensor
array coated with molecularly imprinted nanobeads for detection of typical carboxylic acid
vapors from human body odor [82]. Lal et al. recently developed a QCM chemical sensor
modified nanoclay doped polymeric films for sensing of toxic chemicals in environments.
Their sensors shown large and stable response to target chemicals [51]. Ayankojo et al. de-
signed and fabricated a QCM sensor based on based on molecularly imprinted polymer to
detect amoxicillin antibiotics in aqueous samples [83]. QCM sensors are as highly sensi-
tive and accurate mass sensors for the detection of chemical and biological warfare agents
[84, 85]. However, their response signals are easily effected by noise and humidity, which
limited their applications.

1.3.4 Electronic-nose

Electronic-nose (E-nose) systems have been regarded as the most useful instrument because
of its significant features, such as relatively fast assessment speed, selectivity and stability
[86]. In addition, they are cheap sensors which can be easily integrated in current production
processes [87]. As illustrated in Figure 1.7, E-nose is composed by several of sensor ele-
ments, we can also call them sensor array [88]. Similar to the OBs in our noses, the sensor

array is employed as odor molecular parameter capture system. Then, pattern recognition
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algorithms are used for analyzing these high dimension responses, just as our brain. Nowa-
days, E-noses were commercially available in the market, and most of them are consisted
by MOS sensors or conducting sensors [89]. However, there are still relatively few applica-
tions of electronic noses adopted in industry, which is attributed to difficulties in robustness,
selectivity and reproducibility of the sensors. Besides, it is difficult to obtain more molecu-
larly parameters based on existing sensing platform. Nonetheless, the application of E-noses
is rapidly expanding in many areas, including the agricultural, biomedical, environmental,
food, manufacturing, military, pharmaceutical, regulatory, and various scientific research
fields [90]. Dutta et al. described a method for developing a novel, low-cost, hand-held
E-nose for black tea flavor estimation with high classification efficiency [91]. Chen et al.
successfully identified the characteristic aroma components from ten jujube varieties using
E-nose combined with HS-SPME/GC-MS technology [92]. Furthermore, we now have a
greater understanding of the genetics behind the ORs/OBs and the relationships between an
odorant’s molecular property and odor perception (such as sweet). Therefore, development
of sensor element competed with ORs is the critical challenge.

1.4 Localized surface plasmon resonance

The phenomenon of localized surface plasmon resonance (LSPR), which results from the
plasmonic response of nanoparticles by incident electromagnetic waves, can be applied in
sensing of analytes [93-97]. As illustrated in Figure 1.8, LSPR involves the interaction of

metallic nanoparticles (NPs) with electromagnetic waves to induce plasmon oscillations at
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NP surfaces [98—100]. To clarify the mechanism of LSPR sensors, the model was shown by
Equation 1.1 [101, 102].

AL, =mAn(l — e 2a) (1.1

max

where, AA
sitivity, An is the change in RI induced by adsorption, d is the effective thickness, and /,; is

max 1ndicates the wavelength shift, m indicates the refractive index (RI) sen-
the characteristic length of the electromagnetic-field decay.

Equation 1.1 indicated that the changes in RI of the surrounding media were induced
when molecules entered in the sensing volume of the metal nanoparticles [103]. Therefore,
it can be used as a transducer by converting changes in Rl into spectral shifts through induced
electromagnetic fields [104, 105]. Because of its rapid response and high sensitivity, LSPR
has led to the development of optical sensors for various analytes, such as polyphosphates,
blood plasma, and wine [106-110]. Shrivas et al. reported a simple and selective method
for detection of vitamins B-1 and B-6 using LSPR as a chemical sensor colorimetrically.
The sensor showed remarkable abilities in terms of the stability, reproducibility and sensi-
tivity [111]. Lin et al. recently developed a fast, sensitive and high-resolution colorimetric
sensor for benzoyl peroxide detection by using orange sheath-like Au@ Ag nanorods as the
LSPR transducer [112]. Li et al. described a simple, rapid and reliable LSPR biosensor for
erythrocyte counting and ABO blood group typing, which fabricated by immobilization of
antibodies on the gold nanoprisms surface [113]. Alula et al. recently developed a simple,
rapid and low cost LSPR sensor to sensitive and selective quantitation detection of creatinine
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in urine with a low detection limit [114]. Compared with other transducers, such as MOS
sensors and QCM sensors, the superiorities of LSPR sensors are high-speed response and
rapid recovery, which had been proved by our previous to be suitable in gas and odor sensing
[115].
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Fig. 1.8 Schematic diagrams representing localized surface plasmon resonance.

1.5 Molecular imprinted sol-gel

Because responses of LSPR sensors depend on changes in the media surrounding the NPs,
there is a low selectivity for target analytes [116, 117]. Therefore, absorbing materials
or antibodies are always coated on the NP surfaces to enhance sensitivity and selectivity
[118, 119]. Molecular imprinting is an effective approach for creating recognition patterns
of diverse length scales for molecules [120, 121]. By adding templates in the starting ma-
terial, recognition sites would be generated in these polymer materials [122]. When the
templates were removed from the polymer matrix by washing or heating, nano-scale cavities
similar to the template molecules were generated [123]. Through these high specificity cav-
ities, molecularly imprinted polymer (MIP) had been applied as a highly selective sensitive
layer to some transducers, such as QCM sensors [124—127]. Babamiri et al. developed a

MIP-modified nickel nanoclusters biosensor for creatinine determination with a large linear
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range and low detection limit [128]. Zhang et al. recently demonstrated organic electro-
chemical transistors modified with MIPs as highly selective film for chiral recognition of
D/L-tryptophan and D/L-tyrosine [129]. Liu et al. reported a new MIP electrochemical
sensor with ultrahigh sensitivity and selectivity for the detection of 17-beta-estradiol in at-
tomolar levels [130]. Huang described a biomimetic electrochemical sensor based on MIPs
as recognition film for detecting glycoproteins selectively and sensitively [131]. Our previ-
ous work has demonstrated that the introduction of MIP as a sensitive layer is an effective
approach to increase the selectivity of LSPR sensor, which has been used in the selective
detection of terpene vapors [115, 132]. However, organic polymers have some limitations,
such as poor site accessibility and chemical stability.

As one of the most promising tools in material science, sol-gel technique allows us to
design desired materials at low temperatures [133]. The process of sol-gel is concerned
with a transition of a system from liquid ‘sol” into solid ‘gel’. The schematic representa-
tion of the sol-gel process is illustrated in Figure 1.9. By reacting with each other or with
the un-hydrolyzed ones to undergo a condensation reaction, a cross-linked matrix can be
formed [134-136]. In addition, by adding recognition element (templates) in sol-gel ma-
trix, molecular imprinted sol-gels (MISGs) can be generated as sensitive materials for gas
sensing. Recently, sol-gel technology has been applied in various fields, specially in bi-
ological and chemical sensors [137]. Different to traditional polymers, MISGs have high
selectivity, low cost, long life cycles, and tailored physical-chemical properties [138]. Thus,
MISGs have been used for chromatographic separations and chemical sensors [139]. Osto-
van et al. developed superparamagnetic MISGs as bio-sorbents for selective dispersive solid
phase extraction from urine samples [140]. Bou-Maroun et al. reported a microwave sensor
coupled with molecularly imprinted silica for iprodione fungicide detection from hydroal-
coholic medium [141]. Because MISGs are transparent in the visible region, the potential
application of these thin sol-gel films is to develop optical sensors. For this reason, MISGs-
coated LSPR would be expected as a smart strategy for odor detection. Besides, MISGs
can be designed by functional monomers (FM) and template molecules selection. The in-
teraction between FMs and target molecules plays an important role in cavities generation
in MISGs. Additionally, the interactions also associated with the molecularly structure of
odorants. Therefore, MISGs would be applied as smart absorption materials for developing

bio-olfaction based sensing system.
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Fig. 1.9 Schematic diagram of MISGs.

1.6 Motivation and objectives

As illustrated in Figure 1.10, for developing olfaction inspired odor sensor, the relation be-

tween odor descriptions, odor maps and molecular parameters should be discussed. In addi-

tion, highly selectivity and sensitivity sensing platform should be explored and developed.

MISGs was expected for capturing the molecularly structure information from odorants.

Therefore, the primary objective of present study will focus on the following 3 aspects:

e The first objective is to explore the relationships between odor-induced patterns of

activity (odor map) and the associated molecular parameters.

e The second task is to explore the relationships between odor perception and molecular

parameters of odorants.

e The last objective is to explore a possibility to use LSPR and MISG for developing

olfaction inspired odor sensors.
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Fig. 1.10 Motivation and objectives.

1.7 Organization of dissertation

The organization of the dissertation is illustrated in Figure 1.11.

Chapter 1 composed the background of the present study. The general introductions on
the mechanism of bio-olfaction model and odor sensors. In addition, the basic characteristics
of LSPR sensors and MISGs are presented. Finally, the motivation and objectives of the
dissertation are introduced.

Chapter 2 explores the correlation between odor maps (OMs) and the molecular param-
eters (MPs) of odorants [142]. Artificial neural network models based on the OM and MP
feature values are proposed as a means to identify odorant functional groups. The feasibility
of OMs and MPs for odorant function-group classification using each model is accessed.

Chapter 3 presents a proof-of-concept model by which odor information can be obtained
by machine-learning-based prediction from molecular parameters of odorant molecules [143].
Different machine learning algorithms are employed and their prediction results were com-
pared. Finally, golden delicious apple GC-MS data is used to prove the feasibility of the
model established in present study.

Chapter 4 explores a possibility to use LSPR of AuNPs and MISGs as the sensitive layer
to recognize typical organic acid [144]. MISG films generated by different organic acid
templates are coated on Au nano-island layers for establishing a MISG-LSPR multichannel
sensor platform. The feasibility of the sensor array is discussed and evaluated.
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Chapter 5 fabricates a sensitive and selective nanocomposite-imprinted, LSPR sensor

for cis-jasmone vapor [145]. The functional monomer and the ratio of matrix materials to

functional monomers in the MISGs are investigated and optimized.
Chapter 6 develops an AuNPs@MISG-coated LSPR sensor platform for detection and
identification of PVOCs. AuNPs doped in MISGs are expected for enhancing the signal

intensity by hot spot effect. Critical parameters for AuNPs@MISGs (AuNPs size, amount,

and spin coating speed) are tuned for sensitivity optimization. The identification capacity of

the sensor array for PVOC:s is assessed and discussed.

Chapter 7 summarizes the experimental works and concludes the dissertation with rec-

ommendations for future work.






Chapter 2

Odorant clustering based on molecular
parameters and odor maps

2.1 Introduction

Studying the relationship between olfactory response patterns and the structural features of
odorants can be helpful in understanding the mechanisms underlying olfactory perception
and for predicting the structure-odor relationship. Consequently, the primary goal of this
chapter was to explore the relationships between odor-induced patterns of activity and the
associated molecular features.

Firsty, we obtained 2-deoxyglucose glomerular activity-pattern images for 178 odorants
from the Johnson freely available odor-map database. For each map, the gray value of each
pixel was extracted from the images to fabricate a 178 X 70329 image matrix. Forty-six
molecular feature parameters for the odorants were calculated using BioChem3D software.
A schematic of the data-processing method is shown in Figure 2.1. Based on the charac-
teristic variables extracted by principal component analysis (PCA), hierarchical clustering
analysis (HCA) was performed on the Pearson correlation coefficient maps (PCC-maps) to
investigate the effects of the molecular parameters. 2D artificial cluster maps based on the
olfactory and molecular information were generated via t-distributed stochastic neighbor-
embedding (t-SNE). Based on these datasets, three machine learning models-learning vector
quantization (LVQ) network, support vector machine (SVM), and extreme learning machine
(ELM)-were employed to establish odorant function-group discrimination models. We then
assessed the feasibility of odor maps (OMs) and molecular parameters (MPs) for odorant

function-group classification using each model.
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Fig. 2.1 Schematic diagram of data processing.

2.2 Materials and method

2.2.1 Glomerular activity patterns and molecular parameters

We used glomerular activity patterns (odor maps) from the dorsal part of rat olfaction bul-
bles. OMs (grey image), chemical abstracts service (CAS) numbers, and functional group
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labels were extracted using semi-automatic and manual methods from the Johnson and Leon
database. Forty-six MPs for 178 odorants (Table A.1) were determined using the MOPAC
and GAMESS packages in ChemBio3D Ultra 11.0 (2008, Cambridge Soft, Massachusetts,
USA) by establishing 3D models for odorants based on simplified strings of molecular input-
line entry specifications (SMILES). All the parameters used in this study are listed in Ta-
ble 2.1.

Table 2.1 46 types of molecular parameters extracted by ChemBio 3D.

No. Molecular parameter No. Molecular parameter No. Molecular parameter

1 Boiling point 18 Total energy 35 Shape coefficient

2 Critical pressure 19 Dipole 36 Sum of degrees

3 Critical temperature 20 Number of Hbond acceptors 37 Sum of valence degrees
4 Critical volume 21 Number of Hbond Donors 38 Topological diameter

5 Gibbs free energy 22 Ovality 39 Total connectivity

6 Heat of formation 23 Principal moment 40 Total valence connectivity
7 Henry’s law constant 24 Elemental analysis 41 Wiener index

8 Ideal gas thermal capacity 25 Molecular weight 42 Core-core repulsion

9 LogP 26 LogS 43 COSMO area

10 Melting point 27 Pka 44 COSMO volume

11 Mol refractivity 28 Balaban index 45 Electronic energy

12 Vapor pressure 29 Cluster count 46 ITonization potential

13 Water solubility 30 Molecular topological index

14 Connolly accessible area 31 Num rotatable bonds

15 Connolly molecular area 32 Polar surface area

16 Connolly solvent excluded volume 33 Radius

17 Exact mass 34 Shape attribute

2.2.2 Construction of PCC-maps for molecular features

We used the following computational process to generate PCC-maps for investigating the
relationship between OMs and MPs.

Step 1. Each 357 x 197 OM was transformed into a 1 X 70329 vector. We created a
matrix of odor maps (Mom) by combining the 178 OMs (gray images) (Figure 2.2 a, For-
mula 2.1).

P, P
Py P,

Py 70329

Mom = P. 270329 2.1)

Pi7g1 Progo P178.70329 1178570309

Step 2. We created a similar matrix of odorant parameters (Mop), which contained 46
molecular parameters from 178 odorants (Figure 2.2 b, Formula 2.2).
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Step 3. We calculated the correlation coefficients between molecular parameters and the
gray-level value of each OM pixel. The PCC matrix M pcc_jnq, Was defined as follows:

Mpcc_map = {R; jIR; j = Cor(Mom(i, ), Mop(j, :)),i = 1,2,3,...,46,j = 1,2,3,...,70329}
(2.3)
where, Mom(i, :) and Mop(j, :) indicate the i-th and j-th row vector in Mom and Mop,
respectively. Cor(x, y) was defined in Formula 2.4.

N
21 (xi - ?_C)(yi -¥)

=

Cor(x,y) = (2.4)
N N
\/§<xi—>%>2- ;(yi—y)z

where, X and y are the mean values of vector X and y, respectively. N is the dimension
of vector X or y (here, N was 70329). Thus, the PCC matrix M pcc_q, Was established as
Formula 2.5.

Rii Rip - Ri039
R2 R ... R
_ 1 Ry 2,70329
MPCC—map - . : : : (25)
Rys1 Racp  Ra670329 ygs0320

Step 4. We performed HCA based on the Euclidean distances in the latent variables
extracted by PCA, and applied Ward’s method as a similarity criterion to cluster the 46
molecular parameters into homogeneous groups. The clustering results were then evaluated
and analyzed to investigate the relationships between MPs and OMs.

Step 5. We reshaped each row vector of M pcc_ g, @s @ 357 X 197 matrix and obtained
the PCC-map for each MP.
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Fig. 2.2 Schematic diagram of obtaining matrix of odor maps (Mom) (a) and molecular
parameters (Mop) (b).

2.2.3 Selection methods for characteristic variables
Principal component analysis (PCA)

PCA is generally used to extract characteristic variables from a high-dimensional data set
[146]. PCA can remove linear and duplicated information by constituting principal compo-
nents (PCs) from original data. The PCs listed first in the output are selected as characteristic
variables according to the cumulative contribution rate, while those listed at the end of the
output are removed because of noise [147].

Barnes-Hut t-distributed stochastic neighbor embedding (t-SNE)

t-SNE is a novel, unsupervised embedding method that has been used to visualize high-
dimensional data at a lower dimension [148], and that allows dataset embeddings to be
learned. The computational process is as follows.

Step 1. Given a high dimension dataset L = {x;|x; € R",i = 1,2, ..., N}, where x; is
a vector (1 X m) of the i-th sample, m indicates the total variable number of each sample, and
N indicates the total sample number in the dataset, the function d(x;, x;) is the computed
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distance between a pair of samples. Here, we calculated the Euclidean distance, d(x;, x j) =

i = x;]]-
Step 2. We used Formula 2.6 to calculate the pairwise similarities (p;;) between the
samples.

exp(—||x; — x;||°/26%)

ij = ) (2.6)
k(=% = xi || 771282)
where 6 is the variance parameter of the Gaussian function.
Step 3. We calculated the similarity (q;;) between target values, T' = { yily; € R",i =

1,2,..., N}, in a low-dimensional space (m = 2 or 3) using a normalized Student-t kernel

with one degree of freedom (Formula 2.7).

7 —1
(T + [y =)
IR ] .

-1
k(U ||y = yl||2)

Step 4. Based on Kullback-Leibler divergence measuring, we determined the locations

of the embedding points (Y).

c)=KLPIQ) = Y Y p,;log 22 (2.8)
i dij
The optimal low-dimensional representation Y was calculated by minimizing C(Y'). Barnes-
Hut t-SNE was employed to establish 2D artificial odor maps. Here, t-SNE was calculated
using the R (version 3.2.2) package named "Rtsne” (version 0.1). More detailed explanations
of t-SNE processing can be found elsewhere [149].

2.2.4 Sample division method

Rational division of sample sets is crucial for improving the test accuracy of models [150].
The test set should include the utmost main information from the original samples. An-
other benefit of rational sample-set division is that it avoids overlapping in machine-learning
models. Here, the Kennard-Stone (KS) algorithm was selected for the sample partition [151].
The details of this process have been described by other research [152, 153]. In the current
study, 178 odorants were divided into train and test sets via the KS method. The ratio of
samples between train and test sets was 3 to 1. The train set therefore contained 135 samples
and the test set contained 43.
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2.2.5 Modeling methods

Learning vector quantization (LVQ)

As a supervised learning algorithm for classification, LVQ is mostly applied for pattern
recognition or qualitative analysis based on self-organizing maps [154]. An LVQ network
can be optimized by confirming the decision boundaries between neighboring groups. The
network contains three layers: an input layer, a competitive layer, and a linear output layer
[155]. In this study, LVQ1 was applied to establish the classification models. Additional

information about this type of LVQ network can found elsewhere [156].

Support vector machine (SVM)

SVM is a powerful classification model based on statistical learning theory, which has been
widely applied in machine vision, image processing, and pattern recognition [157, 158]. By
establishing a hyperplane as a decision surface, the positive-examples and counter-examples
can be divided such that they are separated by the greatest possible distance. Details re-
garding SVM have been published elsewhere [159, 160]. In the current study, a radial basis
function (RBF) was selected as the kernel function for the SVM model, which was estab-

lished using the Libsvm (version 2.81) package [161].

Extreme learning machine (ELM)

ELM is an efficient single-hidden-layer feed-forward neural network that is widely used for
establishing non-linear relationships because of its good performance at generalization [162].
ELM can also overcome some difficulties in traditional learning methods, such as learning
rate and epochs [163]. If the number of hidden layer nodes is assigned, the weights between
input neurons and hidden neurons can be chosen and fixed randomly [164]. Details regarding

the computational process for ELM can be found elsewhere [165].

2.3 Results and discussion

2.3.1 Molecular parameters and functional group labels

In our previous study, PCA was carried out on the basis of 79 molecular parameters of odor-
ants from the odor-map database [21]. The result indicated that the number of parameters that
are important for generating odor maps was not large. Indeed, only 15 parameters showed
strong relevance to the first 6 PCs. Based on the above results and limitation of the software

(Chembio 3D), in this study we only calculate 46 parameters to carry out the analysis.
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The research of Mori reveal that in the rat OB there exist nine independent zones which is
corresponding to different functional groups [166]. Other evidence has shown that functional
groups affect odor sensation. For example, odorants with the functional group *-COOH’ are
perceived as smelling like sweat [167]. The above results indicate that functional groups
may be a good labels for odorant classification, and the identification of functional groups
is a better way to understand odorant sensation. Analysis of variance (ANOVA) was used to
search the feature response area for six mainly functional groups firstly (p < 0.05). The result
was shown in Figure 2.3. It indicated that each functional group has their special region.
However, we can also find some overlapped between some functional groups. Therefore,

functional group would be a feasible label for odor maps analyzation.

. Ester Ajomiatic Alcohol Retoiie Aromatic with
(Notlactone) i i (Not phenol) O-containing substituent
Small aliphatic 7 2 5 Small aliphatic ketone
. - Heterocyclic Aldehyde Carboxylic acid < Alkane
ester (C<8) (C=8)

Fig. 2.3 Response regions for 12 types of functional groups are extracted by ANOVA.

In addition, we summarized the functional group label that appeared in the OdorMapDB.
The 300 odorants are labeled by seven functional groups in which most show crossed infor-
mation, especially for complicated odorants with high molecular weights. For odorant clas-
sification, the labels should not intersect each other. To simplify the model and to improve
prediction accuracy, 14 non-intersection labels collected from 178 odorants were chosen to
test our hypothesis (Table 2.2).
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Table 2.2 The list of 14 functional group labels considered in this study.

Cluster No. Functional group description Sample number
1 Small aliphatic ester (not alicyclic, C < 8) 11
2 Primary alcohol 26
3 Alcohol (not phenol) 13
4 Aromatic ester (not lactone) 10
5 Aliphatic ester (not alicyclic) 5
6 Aliphatic or alicyclic hydrocarbon alkane 20
7 Aromatic aldehyde 11
8 Aliphatic or alicyclic hydrocarbon 11
9 Aromatic (only) 15
10 Aldehyde (only) 12
11 Aliphatic ketone (not alicyclic, C < 8) 12
12 Carboxylic acid 21
13 Aliphatic or alicyclic ketone (C < 8) with multiple O-containing function groups 5
14 Aliphatic ester (not lactone) with multiple O-containing functional groups 6

2.3.2 Clustering characterization for PCC-maps of molecular param-
eters

A correlation heat map for the 46 molecular parameters (Figure 2.4) shows that some param-
eters are linearly related and that some redundant information is included in the molecular
parameter matrix. Therefore, before clustering, we performed PCA to reduce the dimen-
sions of the PCC-maps and MPs. Based on Euclidean distances between the first four latent
variables extracted by PCA (accumulative contribution = 90.9%, Figure 2.5 a), HCA was
performed to investigate the relation between MPs and OMs. The results wereas organized
and depicted by a heat map shown in Figure 2.6 a. The horizontal dendrogram of the heat
map shows the 46 MPs are clustered into 7 groups. All the PCC-maps were provided in
Figure 2.7. Similar response pattern is shown in each group. It indicated that the MPs in the
same group could contribute the similar information to OMs. For example, most of parame-
ters contained energy information are clustered in group 1, and parameters contained polarity
information are clustered in group 2. Further, low correlation coefficients are observed for
each molecular feature. This finding indicates that the relationships are non-linear, and that
one odor receptor could be linked to multiple physicochemical odorant features. These con-
clusions are supported by Kaeppler’s and Johnson’s work [168].

Through the same procedure, HCA was applied to the first 11 PCs (cumulative contribu-
tion rate = 91.4%) of the Mop (Figure 2.5 b), and the result is shown in Figure 2.6 b. Groups
visualized by these heat maps shared some similarities to the PCC maps, such as cluster 2
and cluster G, cluster 5 and cluster D, and cluster 6 and cluster F. However, some parameters
are clustered differently between the two heat maps. This indicates that these parameters are

sensitive to olfactory information.
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Fig. 2.4 Correlation map for 46 types of molecular parameters.

2.3.3 Mapping the odorants in t-SNE space

Next, we investigated the possibility of mapping odorants in 2D space. Before using t-SNE,
we always employed PCA to extract vital information from the original matrixes. Generally,
when PCs have more than 85% cumulative contribution from the original dataset, these PCs
can be used to replace the originals [169]. Here, the first 80 PCs (cumulative contribution
rate = 86.0%) for Mom and the first 23 PCs for Mop (cumulative contribution rate = 99.0%)
were used as the inputs to the t-SNE analysis (Figure 2.8). Next, the Barnes-Hut t-SNE
algorithm was utilized to plot the odor maps in 2D space. In total, 178 odorants from odors
with 14 functional groups were mapped into 2D t-SNE space. The initial dimensions were

set to 80 for Mom and 23 for Mop, and the perplexity and maximum number of iterations
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Fig. 2.6 Heat map and hierarchical dendrograms of the PCC-maps (a) and parameters (b) for
46 molecular parameters. Cluster analysis was performed by Ward’s method on Euclidean
distance of the first 4 PCs for R-maps. Each row indicated one type of molecular parameter,

and each column indicated a PC.

were set to 50 and 10000, respectively. Table A.1 shows the details for the data calculated

by t-SNE.

The artificial map generated from the olfactory information is shown in Figure 2.9 a. It
indicates that 64.04% of samples within the same category are clustered together (Table 2.3).
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map indicates the correlation coefficient between a pixel and a molecular parameter. All
PCC-maps are clustered seven groups.
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Fig. 2.8 Contribution rates and standard deviations of PCs for olfactory image matrix (a) and
molecular parameter matrix (b).

Additionally, samples from the chemical categories small aliphatic ester (C < 8), aliphatic
or alicyclic hydrocarbon, aromatic, and carboxylic acid are clustered in multiple groups.
This indicates that carbon-chain length is a vital factor for aliphatic esters (cluster 1) and
alcohols (cluster 9), and that branched chains play a role in distinguishing odorants with
hydrocarbon alkanes (cluster 6) from those with carboxylic acids (cluster 12). Most odorants
classified as aromatic (cluster 3, 4, and 7) are mapped in the left of t-SNE space. However,
some aromatic odorants are scattered and not clustered together. We attribute this result
to insufficient numbers of samples which cannot completely identify hidden patterns of the
molecular structure. Some clusters, such as clusters 4, 7, 6-1, and 10, overlapped in t-SNE
space, demonstrating that they would be smelled similarly by a rat. Compared with olfaction
information maps, cluster overlapping is observed more in the molecular information maps
(Figure 2.9 b). Interestingly, some clusters, such as clusters 1, 9, and 12, are clustered into
multiple groups in the olfactory map, but are clustered into a single group in the molecular
information map. For example, the olfactory images for odorants in cluster 12-1 are different
from those in cluster 12-2 because of the distance between these two groups in the olfaction
information map. However, in the molecular information map, odorants in cluster 12 are
clustered into only one group. This demonstrates that 46 parameters are not enough for ideal
mapping, and that some vital functional group parameters could have been missing from the

analysis.
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Table 2.3 Summary for the cluster accuracies for 2D artificial maps established by OMs and
MPs.

Cluster No. Sample number Olfactory images Molecular parameters
Correct number Accuracy Correct number Accuracy

1 11 9 81.82% 8 72.73%
2 26 11 42.31% 12 46.15%
3 13 12 92.31% 13 100.00%
4 10 6 60.00% 7 70.00%
5 5 4 80.00% 5 100.00%
6 20 13 65.00% 15 75.00%
7 11 7 63.64% 7 63.64%
8 11 7 63.64% 8 72.73%
9 15 13 86.67% 9 60.00%
10 12 4 33.33% 7 58.33%
11 12 6 50.00% 8 66.67%
12 21 12 57.14% 17 80.95%
13 5 5 100.00% 4 80.00%
14 6 5 83.33% 4 66.67%
Total 178 114 64.04% 124 69.66%

2.3.4 Functional group-identification models

To assess the potential for OM and MP to classify odorants, we applied LVQ, SVM, and
ELM classification methods to each and compared the results. The features acquired by
PCA or t-SNE were set as the input data for 178 odorants, and the 14 types of functional
group labels were set as the output of the models.

LVQ Models

To acquire optimized LVQ models, training epoch, learning rate, and learning goal were set
to 500, 0.1, and 0.05, respectively. As a necessary parameter for LVQ networks, the number
of hidden nodes is always set by trial and error. Here, the range of hidden layer nodes was 1 to
100 (Figure 2.10). We chose the smallest numbers because these were associated with greater
accuracy. The numbers of hidden layer nodes for OM-PCA, OM-tSNE, MP-PCA, and MP-
tSNE were 35, 15, 34, and 98, respectively (Table 3.2). The accuracy of functional group
identification for train and test sets using the four types of datasets are listed in Table 3.3.
The results suggest that models established by PCA higher accuracies than those established
by t-SNE. Compared with t-SNE, LVQ thus more suitable for the dataset obtained by PCA.
However, LVQ identification of odorants generally poor, with the highest accuracy being
only 69.77%.
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Fig. 2.9 Odorant clustering generated in OM (a) and MP (b) spaces by using t-SNE method.
Dimension 1 and 2 indicates 2 values calculated by t-SNE. Each point indicates an odorant.

SVM Models

The SVM kernel function was set to RBF, and 5-fold cross test was performed to obtain the
penalty factor (c) and the RBF parameter (g). The parameters for the SVM models are listed
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Fig. 2.10 The accuracies under different numbers of hidden layer nodes for LVQ networks in
the train (C) and test (V) set. OM-PCA and OM-tSNE indicated that the models established
by the PCA or tSNE of odor maps (OM) for odorants. MP-PCA and MP-tSNE indicated the
models established by the PCA or tSNE of molecular parameters (MP) for odorants. The
optimal number for OM-PCA, OM-SNE, MP-PCA and MP-tSNE are 35, 15, 34 and 98,
respectively.

in Table 3.2, and the accuracy of each SVM model is shown in Table 3.3. For the train set,
the accuracies for the MP-PCA-SVM and MP-tSNE-SVM models are 93.33% and 82.63%,
respectively, which higher than those observed for the OM-PCA-SVM and OM-tSNE-SVM
models (29.63% and 14.81%, respectively). Similar results are shown for the test sets. This
demonstrates that the SVM models established by molecular information performed better

than those established by olfactory information.

ELM Models

We set the excitation function for the ELM models to ”sig”. The number of hidden layer
nodes for ELM models were also determined by trial and error. Here, one model was trained
1,000 times to overcome the randomness of ELM models. The numbers of hidden lay-
ers were chosen based on the average accuracy across the 1,000 models (Figure 2.11), and
equaled 54, 51, 21 and 47 for the OM-PCA, OM-tSNE, MP-PCA, and MP-tSNE models
respectively (Table 3.2). The accuracy of functional group identification for train and test
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sets using different datasets is shown in Table 3.3. The results show that for the train set, the
OM-PCA-ELM model was more accuracy (94.81%) than the other models (OM-tSNE-ELM,
72.59%; MP-PCA-ELM, 89.63%; MP-tSNE-ELM, 86.67%). For the test set, all models were
more than 90% accuracy. The MP-tSNE-ELM model was the most accuracy (95.35%), fol-
lowed by the OM-PCA-ELM and MP-PCA-ELM models (93.02%), and the OM-tSNE-ELM
model (90.70%). Thus, the OI-tSNE-ELM, MP-PCA-ELM, and MP-tSNE-ELM models
were more accuracy for the test set than for the train set. Although test-set accuracy is gener-
ally lower than train-set accuracy, the reverse is possible if most of the represented samples
were chosen in the train set that established the model [170, 171].
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Fig. 2.11 The accuracies under different numbers of hidden layer nodes for ELM networks in
the train (C) and test (V) set. OM-PCA and OM-tSNE indicated that the models established
by the PCA or t-SNE of odor maps (OM) for odorants. MP-PCA and MP-tSNE indicated
the models established by the PCA or t-SNE of molecular parameters (MP) for odorants.
The optimal number for OM-PCA, OM-SNE, MP-PCA and MP-tSNE are 54, 51, 21 and 47,

respectively.

Identification performance for different models

Comparing the three types of models, ELM was the best at functional group identification.
This was likely because ELM does well in generalization. This is consistent with other stud-
ies showing good prediction performance by ELM [172, 173]. We also found that SVM
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performed well with MP-PCA (93.33% and 90.70%) and MP-tSNE (82.22% and 83.72%)
datasets. However, poor results were observed for OM-PCA-SVM (29.63% and 18.60%)
and OM-tSNE-SVM (14.81% and 13.95%) models. This suggests that SVM models are
more suitable for establishing functional group-identification models based on molecular
parameters. Although MP-tSNE-ELM had the highest accuracy (95.35%) for the test set,
its accuracy in the train set was only 86.67%. The model established by OM-PCA-ELM
presented acceptable identification accuracies for both the train (94.81%) and test (93.02%)
sets. Therefore, we suggest that OM-PCA-ELM is the optimal model for identifying func-
tional groups of odorants. Compared with other datasets, for functional group identification
in odorants, the features extracted from odor maps via PCA contained more information than

the 46 molecular parameters.

2.3.5 Discussion

An odorant can be described by multiple molecular parameters or by a neuronal response
pattern in the mammal OB. Investigating the relationship between molecular features and
OB-derived images of neuronal activity is a challenge in developing sensor-based machine
olfaction. Many analyses have been carried out focusing on the classification of odor de-
scriptors or molecular feature [28, 174, 175]. The importance of the olfactory information
in OB is not fully understood and thus less attention has rarely been paid to the image analy-
sis of OB. In our previous study that was based on PCA, 15 key parameters were obtained by
evaluating the correlations between the molecular parameters and PCs [21]. However, only
six PCs were analyzed which might not be enough for describing all odorant features due to
the complexity and nonlinearity of the dataset. In the present study, t-SEN was applied for
the high-dimensional data analysis. t-SNE was considered to be able to provide a competi-
tive performance in dimensionality reduction if compared with conventional methods such
as PCA and multi-dimensional scaling. The result shown in this study confirm that t-SNE
can be used as an effective approach to establish relationship between molecular parameters,
odor map and functional groups. In addition, some molecularly information include size, po-
larity or carbon chain, shown higher correlations to odor maps. Therefore, these molecular

parameters should be considered firstly for developing odor sensors.

2.4 Conclusion

In this chapter, we accumulated and analyzed 178 odor maps from the LJ database and their

46 types of molecular features. PCC-maps for molecular parameters turned out to be clus-
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tered in seven groups, and the parameters in each group had a similar effect on the images
of olfactory responses. Low correlation coefficients indicated that the relationship between
molecular features and the odor map responses was not linear. All odorants were mapped
in 2D space, and similar odorants were clustered together. Compared with the cluster map
generated by molecular parameters, olfactory images contained more detailed information,
such as the lengths of carbon and branched chains. We tested how well different models
could identify functional groups when the models were established based on olfactory infor-
mation or molecular parameters. The results showed that OM-PCA-ELM was the optimal
model. Although classifiers with molecular parameters as feature quantity were weaker than
those with odor map as feature quantity, a comparative model could be established if it was
based on enough molecular features. This research would be applied in developing biology

olfaction based odor recognition sensors.



Chapter 3

Prediction of odor perception from
molecular parameters

3.1 Introduction

In this chapter, the relation between molecular parameters (MP) and odor descriptors (OD)
was discussed. In addition, we test the possibility that a machine-learning based prediction
model could be used to replace the human panelist in gas chromatography-olfactometry (GC-
O) (Figure 3.1). As illustrated in Figure 3.2, after the GC effluent is identified by mass
spectrometry, its MPs can be transferred by a cheminformatics software and inputted into a
classifier system in which each classifier is labeled by a specific ODs (a word like “sweet”,
“green”, “fruity”, and "herbaceous”, etc.). After the true or false classification, the system
can output the sensory information of the GC effluent, which may consist of single OD (such
as sweet) or multiple ODs (such as sweet and green). These ODs predicted by these models
would be regarded as references for odor sensory information evolution.

A flavor and fragrance database (Sigma-Aldrich, 2016) that includes 1026 odorants and
10 ODs was considered in this study. The physicochemical MPs were acquired via a chem-
informatics software. The features of the MPs were extracted using either unsupervised
(principle component analysis: PCA) or supervised (Boruta: BR) approaches. Ten typical
ODs with high occurrence frequency in the database were selected to establish the models.
Different machine learning algorithms, including support vector machine (SVM), random
forest (RF), and extreme learning machine (ELM), were used and their prediction results
were compared. Finally, golden delicious apple GC-MS data was employed to prove the
feasibility of the model established in present study. A Boruta-SVM model showed high ac-
curacy in ODs prediction, which indicates the possibility for machine-learning based GC-O.
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Fig. 3.2 Concept diagram to predict odor descriptors using molecular parameters

3.2 Materials and method

3.2.1 Odor data collection

Simplified molecular input line entry specification (SMILES) were obtained by both semi-
automatic and manual methods from PubChem (https://pubchem.ncbi.nlm.nih.gov/) accord-

ing to the CAS number of the odorant molecules recorded in the Flavors & Fragrances
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database (Sigma-Aldrich, 2016). The SMILES strings were imported into the Dragon chemoin-
formation software (version 7.0, Kode, Italy) to compute the physicochemical parameters.
The calculation afforded 5270 parameters with various values for each odorant molecule. It
was found that most of parameters (around 4200) were assigned with not applicable (NA).
We removed these parameters with "NA”, and finally got a parameter matrix with 1006 MPs.

All MPs were normalized and centered for further processing.

3.2.2 Data analysis

The data analysis process is shown in Figure 3.3. The dataset for odor prediction is a typi-
cal imbalanced dataset because the class distribution of the positive samples (minor samples
with specified ODs labels) and the negative samples (major samples with non-specified ODs
labels) is not uniform. Here, synthetic minority oversampling technique (SMOTE) was em-
ployed to overcome the imbalance problem [150]. The minority class was over-sampled
at 300% of its original size and the majority class was under-sampled to obtain a balanced
dataset. Afterwards, the sample pool was divided into training and test sets with a 3:1 ratio
using the Kennard-Stone (KS) algorithm [151, 176]. Sample size details for each OD are
listed in Table 3.1. The unsupervised feature combination method (PCA) and supervised fea-
ture selection method (Boruta) were performed to extract kernel information to enhance the
performance of the classification frameworks [177, 178]. SVM, RF, and ELM classification
algorithms were applied to predict ODs. The optimal model was determined by considering
the accuracies of the training and test sets. As the last step, the F1 score based on precision

and recall was used to verify the performance of the optimal model [179].

3.2.3 Model validation

For validation the OD prediction models developed in present study, volatile compounds
identified from actual sample analyzed were employed. Arvisenet and his team studied pri-
mary compounds from Golden Delicious apples’ VOCs by a solid-phase micro extraction
(SPME) fiber and GC/MS analyzation [180]. Their results indicated that thirty compounds
include 13 esters, 9 alcohols, 5 aldehydes, 1 ketone, 1 phenol, and (E,E)-R-farnesene, which
would be considered as primary. Based on the MPs calculated by Dragon 7.0, the opti-
mal model (BR-C-SVM) established in present study was applied for predicting their ODs.
Compared with the ODs reported in other papers or databases, the OD prediction models
developed in this study would be evaluated.
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Table 3.1 Data sets, division of samples, principal components, and molecular parameters “.

Original dataset

SMOTE processed dataset

Division of samples by KS *

MPs labeled by BR method ¢

Odor descriptor Number of PCs
P sample N sample FT P sample T sample Train set Test set Confirmed Tentative Rejected
Sweet 198 828 4.18:1 792 891 1262 421 260 180 206 620
Green 192 834 4.34:1 768 864 1224 408 267 263 211 532
Fruity 133 893 6.71:1 532 598 847 283 238 214 205 587
Floral 81 945 11.67:1 324 364 516 172 201 118 136 752
Meaty 80 946 11.83:1 320 360 510 170 201 141 208 657
Wine-like 81 945 11.67:1 324 364 516 172 200 95 126 785
Apple 76 950 12.50:1 304 342 484 162 188 133 109 764
Fatty 75 951 12.68:1 300 337 477 160 199 116 155 735
Woody 74 952 12.86:1 296 333 471 158 189 129 132 745
Herbaceous 72 954 13.25:1 288 324 459 153 188 122 177 707

# Original and synthetic minority oversampling technique (SMOTE)-processed data sets are described. P (positive sample) indicates the number of samples with

the specific OD label. N (negative sample) indicates the number of samples with the nonspecific OD label.

b Divided by use of the Kennard-Stone (KS) algorithm.

¢ Molecular parameters labeled by the Boruta method.
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3.3 Results and discussion

3.3.1 Odor descriptors

It is well known that for machine learning, the larger the sample size is, the higher the model
accuracy tends to be. For odor prediction, an optimum database should have an appropriate
number of odorant molecules and ODs. Up to now, there are a number of odor databases
that have been reported and analyzed. Recently, Kumar et. al., carried out a comprehensive
statistical analysis of 5 main odor databases which include Flavornet, GoodScents, Leon &
Johnson, Sigma-Aldrich, and SuperScent. One problem of these databases is the sparseness
of the data distribution because an odorant molecule can be described by a varying number of
ODs, but very few molecules are described by a large number of ODs in the databases. The
statistical results of Kumar indicate that the Sigma-Aldrich database possesses both a rela-
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tively larger number of odorant molecules and larger average number of ODs per molecule,
and thus leads to the highest average occurrence of ODs. In view of this characteristic, the
Flavors & Fragrances database of Sigma-Aldrich (2016), which has been upgraded to 1026
odorant molecules and 160 ODs, was adopted and analyzed in the present study. Detailed
information about the 160 ODs is listed in Table B.1. Figure 3.4 summarizes the 20 ODs
that occurred most frequently in the database. The descriptor of "Sweet” is represented by
approximately 200 odorants while the descriptor of "Rose” is represented by approximately
50 odorants. Considering that a badly-established model could result from insufficient sam-
pling, only the top 10 ODs were used to establish our prediction models. The 10 descriptors
include sweet, green, fruity, floral, meaty, wine-like, apply, fatty, woody, and herbaceous.
The minimum number of samples (herbaceous) is over 70. This sample size may help ensure

accuracy of the prediction models.
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Meaty |
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Apple |
Fatty |
Woody |
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Number of sample in Sigma Alrich database

Fig. 3.4 The most 20 frequent ODs in Sigma-Aldrich database. Considered the sample size
for model calibration, the firstly ten odor descriptors were considered in this study.

3.3.2 Feature extraction

As machine learning aims to deal with larger, more complex questions, the extraction of
relevant features for data representation data is a critical problem within model calibration

[181]. It has been reported that machine learning algorithms exhibit a decrease of accuracy
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when the number of variables is significantly higher than an optimal number [182]. Con-
sequently, before model calibration, PCA and BR were employed using unsupervised and
supervised methods, separately, to extract features from all the MPs, and their effects were
evaluated.

PCA was first performed to remove redundant information (Figure B.1). To avoid loss
characteristic information from the original data set, PCs with accumulative contributions
of 99.99% were selected. Table 3.1 lists the number of PCs for 10 ODs. BR was used to
find useful features of each OD. By BR, 1006 MPs were labeled as ’confirmed’, "tentative’,
or 'rejected’ (Table 3.1). In this research, MPs labeled ’confirmed’ or ’tentative’ (BR-CT),
and labeled "confirmed’ only (BR-C) were used in further processing. Features selected by
BR for the 10 ODs are shown in Figure 3.5. This illustrates that although an MP may be
labeled as ’confirmed’ for one OD, the MP could be regarded as a useless feature for other
ODs. This indicates that ODs could be used to describe various dimensions for an odorant.
It can be interpreted that some MPs are associated with some appointed functional groups

of a molecule, and functional groups are related to ODs.

3.3.3 Model calibration

Support vector machine model

SVM Model. The 5-fold cross validation was applied to select penalizing factor (¢) and RBF
kernel parameter (g) for developing SVM models in this research. By multiple attempts,
the range of ¢ was set from 20 to 2729 (the range of g was set from 2710 t0 210) with an
increment of 2%, The optimal values for SVMs were confirmed by the highest accuracy in
all combination of ¢ and g (Figure B.2, B.3, B.4, B.5). The selected results for ten ODs are
listed in Table 3.2. The ODs identification accuracies for calibration set and validation set
of AP-SVM, PCA-SVM, BR-CT-SVM and BR-C-SVM are shown in Table B.2, B.3. The
results indicated that all the models established by SVM had a similar average accuracy:
96.83+1.7% for AP-SVM, 96.89+1.9% for PCA-SVM, 97.19+0.93% for BR-CT-SVM and
96.10+2.8% for BR-C-SVM. However, considered the complexity of model, the BR-C-SVM
would be regarded the optimal model than others in present study.

Random forest model

To establish random forest (RF) models, two parameters: the number of trees (#,,,,) and the
number of features (m,,,) need to be optimized. Although adding more trees will not cause
over-fitting, it will increase the model complexity. Therefore, a sufficient number of trees was

needed to establish RF models. Considered the out of bag error and test error, the optimal
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Ny (Figure B.6, B.7, B.8, B.9) and m,,, (Figure B.10, B.11, B.12, B.13) were determined.
The optimal modeling parameters of the RF models are listed in Table 3.2. The overall
accuracies of the best RF models under AP, PCA, BR-CT, and BR-C datasets are shown in
Figure 3.6. In summary, PCA-RF showed a better average accuracy (92.79+1.63%) than the
AP-RF (90.62+1.26%), BR-CT-RF (90.50+1.21%), and BR-C-RF (90.61+1.85%) models.
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Fig. 3.6 Identification average accuracies of train and test sets for ten odor descriptors by
SVM, RF and ELM.
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Extreme learning machine model

For ELM models, the parameter need to be tuned is the number of hidden layer nodes. In this
study, the parameter was obtained by a trial and error method. The range of number of hidden
nodes was set from 1 to 800. To avoid the randomness of ELLM models, each ELM model was
repeated 200 times and the average accuracy was employed to finish the parameter’s selection
(Figure B.14, B.15, B.16, B.17). Based on the highest average accuracies of calibration set
and validation set, the optimal parameter was determined. Selected results are provided in
Table 3.2. The ODs identification accuracies for the training and test sets of ELM are shown
in Figure 3.6. It shows that the accuracy of PCA-ELM (97.53+1.35%) is higher than AP-
ELM (94.13+1.44%), BR-CT-ELM (94.02+1.59%), and BR-C-ELM (91.78+1.91%).

3.3.4 Model comparison

The average accuracies of the training and test sets for ODs are shown in Figure 3.6. For
“green’, “fruity’, wine-like’, ’apple’, and "herbaceous’ identification, BR-C-SVM shows bet-
ter results than other models. However, PCA-ELM did a better job identifying the ’sweet’
and “meaty’ ODs. When the tree modeling methods were compared (Figure 3.7), it was
found that the ELM had the best identification accuracy (97.53+1.35%), followed by SVM
(97.1940.93%), and RF (92.79+1.63%). Dealing with large variables slows down machine
learning algorithms and requires more resources [149]. Here, PCA and BR were employed
to extract kernel information from a large feature set. The results show that PCA did a bet-
ter job than Boruta in the RF and ELM models. However, PCA is an unsupervised feature
combination method; the PCs are computed based on original data set. Considering the
amount of input information, BR is more suitable for feature extraction from MPs. It was
confirmed that the training time increases with the number of features. Here, by the BR-C
method, only 15.01% information was extracted instead of all MPs. Therefore, consider-
ing the accuracies and modeling time comprehensively, it is suggested that SVM combined
with features extracted by BR-C, whose average accuracy was higher than 96.10+2.8%, is
the optimal model in identifying perceptual descriptors based on MPs. Besides, the recall,
precision, and F1 score of BR-C-SVM were 94.83+5.61%, 86.88+3.04%, and 95.74+3.52%,
respectively, which yields the model with an acceptable generalization ability to predict odor

descriptors based on physicochemical parameters.
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only).

3.3.5 Model validation

Thirty primary VOCs identified from Golden Delicious apples analyzed by GC/MS and their
ODs from databases and predicted by the models in this study were summarized in Table 3.3.
It indicated that 70% (21/30) of compounds were predicted accurately. Besides, the other 7
compounds were shown unpredictable, which can be explained by the insufficient of OD
models establish in presented research. Some ODs, such as ’peanut’ and ’balsamic’ etc.,
were not considered in present study because of their less samples. Although 70% would not
enough to instead of panelists for GC-O, the ODs predicted by models can apply references
for the panelists to enhance their work efficiency. Additionally, the predict accuracy would
be increased by more odorant samples consideration and enough OD models establishment.

3.3.6 Discussion

In this chapter, the relation between MP and OD was discussed. Based on BR-C method,
meaningful molecular information for 10 ODs were selected from 1006 MPs (Table B.4).
Except constitutional MPs (such as molecular weight, number of atoms/bonds, number of
sp hybridized Carbon atoms, etc.), information associated with molecular structure, include
ring descriptors (cyclomatic number, number of circuits, total ring size, etc.), functional
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Table 3.3 Models validation by golden delicious apple sample®.

No. Volatile Organic Compound Odor descriptor from database” Predicted odor descriptor
1 2-propanol Alcohol; butter -

2 1-propanol Alcohol; apple; musty; earthy; peanut; pear; sweet Apple

3 1-butanal Apple; chocolate; creamy; green; meaty; ethereal Green, fruity

4 Ethyl acetate Solvent-like; fruity; anise; ethereal; pineapple -

5 2-methyl-1-propanol Fruity; whiskey; wine-like; solvent-like Fruity, wine-like

6 1-butanol Banana; vanilla; fruity -

7 Propyl acetate Fruity, floral Fruity

8 2-methyl-1-butanol Onion; malty -

9 1-pentanol Sweet; vanilla; balsamic -

10 Isobutyl acetate Apple; banana; ethereal; pear; pineapple Apple

11 1-hexanal Fatty; green Green, fatty

12 Butyl acetate Banana; green; sweet Green

13 (E)-2-hexen-1-al Almond; apple; green; vegetable Green, apple, fatty

14 1-hexanol Green; herbaceous; woody Green, fatty, woody, herbaceous
15 2-methyl-1-butyl acetate Banana; peanut; fruity, apple-like -

16 Butyl propanoate Banana; ethereal Apple

17 Amyl acetate Fruity; banana; earthy; ethereal Fruity, apple

18 (E)-2-hepten-1-al Fruity; rose; fatty; almond-like Green, fruity, apple, fatty
19 6-methyl-5-hexen-2-one Fruity; citrus-like; strawberry -

20 Butyl butanoate Apple; banana; berry; peach; pear Apple

21 Hexyl acetate Apple; banana; cherry Apple, fatty

22 2-ethyl-1-hexanol Oily; rose; sweet Woody, herbaceous

23 Butyl 2-methyl butanoate Apple; chocolate Apple

24 1-octanol Fatty; citrus; waxy; woody Fatty; woody

25 1-nonanal Apple; coconut; fatty; fishy Fatty

26 Hexyl butanoate Green; fruity; apple; waxy Fruity, wine-like, apple, fatty
27 P-allylanisole Alcohol; green; minty; sweet; vanilla Sweet; green; floral

28 Hexyl 2-methyl butanoate Green; fruity; apple; grapefruit-like Green; fruity; apple; herbaceous
29 Hexyl hexanoate Green; vegetable; fruity; apple; cucumber-like Green; fruity; fatty

30 (E,E)-a-farnesene Green; herbaceous -

 Boldface type indicates correctly predicted ODs.
b The odor databases included Flavornet, Sigma-Aldrich, GoodScents, and SuperScent.

group counts (number of aromatic Carbon, umber of unsubstituted benzene Carbon, num-
ber of esters/primary amides/ketones, etc.), atom-centred fragments (CH;R/CH,, CH,R,,
=CH,, R-CH-R, H attached to C;(sp3)/Cy(sp2), etc.), 2D atom pairs (sum of topological
distances between N..N/N..O/ N..S/ O..0, presence/absence of N-S, etc.), played critical
roles on ODs. Additionally, 2D auto correlations (topological charge, mean topological
charge, Geary autocorrelation, etc.), burden eigenvalues (largest eigenvalue of Burden ma-
trix weighted by mass/van der Waals volume/ionization potential, etc.) also contributed on
ODs prediction. The result indicated that if the molecular structure can be detected by sensor,
ODs would be predicted. Therefore, molecularly recognized material, such as molecularly

imprinted materials should be considered for developing olfaction inspired odor sensors.
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3.4 Conclusion

The contribution of this chapter is to present an approach to predict odor perceptions based on
physicochemical descriptors. After processing by the SMOTE and KS methods for balancing
dataset and subset partitioning, two feature extraction methods (PCA and BR) were used to
extract kernel information from 1006 MPs. Three machine learning approaches (SVM, RF,
and ELM) were employed to establish odor descriptor classifier models. The results showed
that SVM models presented better accuracies than others. Although the accuracy of the BR-
C-SVM model is lower than AP-SVM, PCA-SVM, and BR-CT-SVM, when considering the
complexities of the models, BR-C-SVM would be the optimal model in this study. Therefore,
BR-C-SVM has a good potential in predicting odor perceptions rapidly and precisely. This
study demonstrated that MPs associated with machine learning models can be adopted for
odor perceptual senses identification. The research is expected to offer a novel approach for

developing olfaction inspired odor sensor system.



Chapter 4

LSPR sensor based on MISGs for
volatile organic acid detection

4.1 Introduction

Human body odors emitted from skin and body parts are caused by gender, age, heredity,
physiological condition and food habits etc. [183, 184]. Based on those odors alone, people
can assess various personal features of others accurately [185]. Hence, human body odor
would be applied in medical diagnosis and forensic expertise [186]. It has been demon-
strated that human body odor is comprised by diverse VOCs, such as low molecular weight
fatty acids, aldehydes, ketones, amines, alcohols, esters, etc. [187-189]. Among these odor-
ants, organic acids (Cs-C,;) are considered as typical odorants from difference human body
parts, such as foot odor and underarm odor [190]. Traditionally, human body odor has been
analyzed by gas chromatography/mass spectrometer (GC/MS) method [34, 35]. However,
GC/MS is not suitable for on-line detection because of its high-cost, time-consuming and
bulky size etc. [37]. Therefore, novel sensors need to be explored for detecting organic acid
from human body odor.

In chapter 2 and 3, we had founded that the detection of molecularly structure would be
applied for developing odor sensors. In this chapter, molecular imprinted sol-gels (MISGs)
were expected as a molecularly structure recognized layer for localized surface plasmon res-
onance (LSPR) sensors. The schematic diagram of MISG coated LSPR sensor is shown in
Figure 4.1a. Based on the unusual cavities generated in sol-gel matrix, the target organic
acid vapor would be absorbed selectively. And it would induce the change of surface plas-
mon peak position (A,;,) and the transmittance variation in spectrum. By detecting these
variations, an optical sensor for organic acid vapors detection would be developed. In ad-
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dition, human body odor is always composed by diverse of organic acid vapors. Hence, to
detect the mixture of organic acid vapors is another topic in body human odor determina-
tion. Here, three MISG films generated by different organic acid templates, hexanoic acid
(HA), heptanoie acid (HPA) and octanoic acid (OA), were coated on Au nano-island layers
for establishing a MISG-LSPR multichannel sensor platform (Figure 4.1b). The response
matrix was obtained by measuring for organic acid vapors: propanoic acid (PA), HA, HPA
and OA, in single and their binary mixtures. Finally, the response matrix was processed and
analyzed by principal component analysis (PCA) and linear discriminant analysis (LDA)
for odor pattern recognition. The feasibility of the developed MISG-LSPR sensor array for

determination of organic acid vapors was discussed and evaluated.
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Fig. 4.1 The schematic graph of MISG-coated AuNPs film for selective organic acid de-
tection (a) and MISG-LSPR multichannel sensor platform for organic acid vapors mixture
detection (b).
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4.2 Materials and method

4.2.1 Chemicals and reagents

Tetrabutoxy titanium (TBOT), iso-propanol, PA, HA, HPA, OA, titanium tetrachloride (TiCl,),
acetone and ethanol were purchased from Wako Pure Chemical Industries, Japan. 3-aminopropyl
triethoxysilane (APTES) was purchased from Shin-Etsu Chemical, Japan. All of the reagents

were used as received.

4.2.2 Synthesis of MISG reaction solutions

MISGs reaction solution was prepared by dissolving 136 pLL TBOT as a precursor, 50 pL of
template molecules and 24 pL. APTES as a functional monomer in 2 mL of iso-propanol.
Here, HA, HPA and OA were selected as the template molecules. Afterwards, 25 pL TiCl,
was added to initialize the reaction. Finally, the reaction solution was prehydrolyzed in a 70
°C water bath for 1 h.

4.2.3 MISG coated Au nano-island film preparation

Concisely, a TIO glass substrate was cleaned by ultrapure water, acetone and ethanol and
dried with nitrogen flow, successively. After argon plasma cleaned for 5 min (PDC-001,
Harrick plasma, USA), the substrate was immersed in a 1:10 (v:v) ethanol solution of APTES
for 8 h. The substrate was cleaned with ethanol and drying with nitrogen flow, and put into
a quick coater (SC-701 HMCII, Sanyu electron, Japan) for AuNPs deposition, the thickness
was set as 3 nm by tuning the deposition current. Then, the sample was annealed in air
atmosphere at 200 °C for 5 h in a muffle furnace (SSTS-13 K, ISUZU, Seisakusho, Japan)
and cooled naturally till room temperature (25 °C). Afterwards, MISG layers were coated on
the AuNPs film by spin coating 20 pL of its reaction solution. As the last step, the sample
was heated at 200 °C for 1 h for constructing the MISG layer and removing the template
molecules.

4.2.4 Vapor generating system

The vapor generating system used in this study is shown in Figure 4.2a. It was consisted
of an air pump (LV-125A, Linicon, Japan), an air-cleaning filter filled with molecular sieves
and activated carbon, 2 mass flow controllers (MFC) (3660, Kofloc, Japan), a 3 way solenoid
valve (FSM-0408Y, FLON Industry, Japan), a glass bottle (6mL) and a personal computer.

Pure dry air was as the diluting gas in this study. All the gas flow paths were connected by
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Teflon tubes. Through a NI DAQ (USB-6009, National instruments, Austin, USA) card and
LabView software (National instruments, Austin, USA), two MFCs and the gas valve can
be controlled by the personal computer. The concentration C (ppm) of single organic acid
vapor can be calculated by Formula 4.1.

kx D, x 103
C=—""— 4.1)
F
where D, (pg/min) indicted the diffusion rate at the appoint temperature, F (L/min)
indicated the flow rate of diluent gas, k indicated the factor for converting gas weight to gas

volume, which can be calculated as Formula 4.2.

k= 22.4x (273 + 1) x 760
 MXx2I3XxP
where M indicated the molecular weight of organic acid molecule, ¢ is the gas temper-

4.2)

ature and P is the gas pressure (760 mmHg). In this work, single organic acid vapor was
generated by injecting 2 mL of each of organic acids (PA, HA, HPA or OA) in the glass bot-
tle. Binary mixture of acid vapors (A+B) was generated by injecting 1 mL of organic acid
A and 1 mL of organic acid B in the glass bottle together. In this study, 3 types of binary
mixtures (PA+HA, PA+OA, HA+OA) were considered. Cleaned glass bottles were used

for each testing. The flow rates of diluent air were set as 0.6, 0.5 and 0.4 L/min, respectively.

4.2.5 Sensing system

SEM (SU8000, Hitachi, Japan) was employed to analyze the morphology characteristics of
Au nano-islands before and after sol-gel deposition in this study. The schematic of trans-
mittance spectra measurement system is show in Figure 4.2b. The system was included a
light source (LS-1 tungsten halogen light source, Ocean optics, USA), a UV spectrometer
(HR4000, Ocean optics, USA), ahomemade sensing cell (Teflon), 2 optical fibers (Ocean op-
tics, USA) and a personal computer. By the software named OPwave+ (Ocean optics, USA),
the transmittance spectra in real-time were detected and recorded. The scanning range was
set from 400 to 900 nm, and the wavelength resolution was 0.1 nm. The actual photo for the

experimental system and MISG-LSPR electrode in sensing cell was provided in Figure 4.2c.
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Fig. 4.2 Schematics of vapor generation system (a) and sensing system (b). The photo of the
experimental system (c) and the MISG-LSPR electrode in the sensing cell.

4.3 Results and discussion

4.3.1 UV-vis spectra and vapor absorption characteristics

The thickness of MISG layer is a critical factor to its selective absorbability and it can be
controlled by spin coating speed [115]. Firstly, the influence of the spin coating speed on
optical characteristics of MISG/NISG coated Au nano-island films were investigated. The
transmission spectra of bare, NISG and HA-MISG coated Au nano-island versus different
spin coating speeds (1000 rpm, 3000 rpm and 5000 rpm) were shown in Figure 4.3a. It
was demonstrated that the sol-gel layer makes the plasmon peak shift to the red and the
transmittance decrease (Figure 4.3b). Besides, with the increase in spin coating speed, the
transmittance was increased. In addition, the minimum transmittances of samples coated
with NISG were lower than those coated with MISG at the same spin coating speed. These
transmittance decrease and spectral position red shift showed a spin coating speed dependent
feature.

To determine the optimal coating speed for MISG layers, the real-time response charac-
ters of Bare/NISG/HAMISG coated sensors to HA vapor were investigated. The changes of
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Fig. 4.3 Transmittance spectra (a) and optical features (A,,;, and T,,;,,) (b) of NISG and HA-
MISG coated AuNPs versus different spin coating speeds.

transmittance at plasmon peak (A ;) were detected and recorded. The AT can be calculated
by Formula 4.3.

AT =T - T, (4.3)

Where T, indicated the transmittance in air, and T indicated the transmittance in organic
acid vapors. The real-time response to HA vapor was as shown in Figure 4.4. To investigate
the changes of LSPR response before and after coated MISG/NISG layers, bare Au nano-
island was also considered in this study. The RIS of surface plasmon (SP) extinction bands
to dielectric properties of the surrounding medium was depended on the particle size and
the distance between particles [132]. The surface morphology of bare Au nano-island was
studied as shown in Figure 4.5a. It indicated that all AuNPs were formed as arrays, which
would induce a stranger RIS for LSPR [191].

Figure 4.4 showed that the response of bare sample was larger, and its response time was
faster than NISG or MISG coated samples. Compared with MISG/NISG coated samples,
more HA molecules could be absorbed in the RI sensing volume (SV) of AuNPs, and it would
induce a stranger response for the vapor. We can also find that no responses were observed
on samples coated NISG. It indicated that the adsorption capacity of pure titanate sol-gel
matrix was weak, which agree with the results reported by Matsuguchi et al. [122]. The
SEM image for NISG coated sample (spin coating speed 3000 rpm) is shown in Figure 4.5b.
It suggested that the surface of NISG was full of cracks. Compared with MISG coated
samples (Figure 4.5¢), NISG coated sample showed a relative smooth surface and its surface

area was smaller. This surface morphology would induce its poor gas responses. Besides, gas
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Fig. 4.4 Real-time response of HA-MISG and NISG with different coating speeds to HA
vapor. Gas responses were obtained by keeping the switch on to HA vapor flow for 600 s
and then to air flow for 600 s.
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Fig. 4.5 SEM images of bare Au nano-island (a) and coated with NISG (b), HA-MISG (c),
HPA-MISG (d) and OA-MISG (e). All the MISG/NISG films were fabricated by spin coating
speed at 3000 rpm.

molecules would be obstructed by the pure sol-gel layer to be in the SV of AuNPs. Compared
with the bare sample, the responses of MISG coated samples were smaller. It could be
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explained that only the molecules absorbed by the nano-scale cavities of MISG in SV could
be sensed. By the effect of MISG layer, a longer response and recovery time was observed
in in-situ responses. Besides, too thick layer (spin coating speed: 1000 rpm) would induce
a longer recovery time. Just like we discussed in former work, excessive thin MIP layer is
difficult to realize a good selectivity for target molecules, while thick layer would induce a
long recovery time [115]. Considered the response and recovery time simultaneously, the
relative optimal spin coating speed was selected as 3000 rpm in this study.

To determine the absorption characteristics of HA-MISG films to HA vapor, the in-situ
responses of HA-MISG coated LSPR sensor (spin coating speed: 3000 rpm) to PA, HA and

OA vapors were investigated. The normalized response K can be defined by Formula 4.4.

K; = ATIC; (4.4)

Where j is on behalf of 3 types of organic acid vapors: PA, HA and OA. C; is the
concentration of organic acids. Here, the concentrations of PA, HA and OA were 40.93,
21.05 and 11.23 ppm, respectively. Figure 4.6 shows that the corresponding response signal
of HA (0.01844) is the larger than that for PA (0.00523) or OA (0.00781). A faster response
speed was also observed to HA vapor. Besides, the recovery time for HA is longer than
other vapors. It indicated that more target gas molecules were absorbed in the SV of AuNPs,
which would be contributed by the selectivity of the MISG layer.

4.3.2 Sensor array response for organic acid odors

By spin coating 3 types of MISG reaction solutions at 3000 rpm on Au nano-island layers,
a MISG-LSPR sensor array was constructed. The sensor array was consisted of 4 channels:
bare, HA-MISG, HPA-MISG and OA-MISG (Figure 4.1b). The transmission spectra for 3
types of MISG coated samples were shown in Figure 4.7. It suggested that by spin coating
different type of MISGs, their A,;, and T,;, were different. SEM images for different types
of MISG coated samples are shown in Figure 4.5. It illustrated that AuNPs were covered
by MISG films. We can also find that the surfaces of MISG coated samples were full of
cracks, and the degrees of tearing and roughnesses were different. Therefore, the surface
areas of MISG coated sample are larger than NISG coated samples’, which would induce the
different response intensities. By adding template molecules, the polymerization of sol-gel
can be effected, which would be explained these diverse morphologies. Because the size
of cavities generated by template molecules in MISG films were too small, it is different to
observe from SEM images.
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For each measurement, sensors were exposed in dry air for 300 s firstly. Then, the target
vapor exposure time 60 s and dry air was passed for next 300 s for recovery. By changing
the flow rates (0.4 L/min, 0.5 L/min and 0.6 L/min), 3 concentrations of a vapor would
be obtained. A typical response of HA-MISG coated LSPR sensor to 4 types of organic
acid vapor (flow rate: 0.5 L/min) was shown in Figure 4.8. In this study, 9 samples (3
concentrations X 3 repetitions) from 7 types of vapors (PA, HA, HPA, OA, PA+HA, PA+OA,
HA+OA), total 63 samples were considered. Hence, a response (AT') matrix Mgs, 4 for the
sensor platform could be obtained for subsequent research.

0.1

0.0

-0.1 1

-0.2 H

AT (%)

-0.3

0.4

] : : | ' i PA
-0.5 b Y Co\ HA
= 60s ] ' ! i ] ]
i g™ 008 b i T L - HPA
t,;= 300s P P P 0OA

0.6 .

LA SR N NSO LN NN (N S NN S UL A AN NN SR B
0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300
Time (s)

Fig. 4.8 Typical response of HA-MISG coated LSPR sensor to fatty acid vapors. Gas re-
sponses were obtained by keeping the switch on to organic acid vapor flow for 60 s and then
to air flow for 300 s.

4.3.3 Discrimination of organic acid vapors

Before discriminating, the matrix was pre-processed by auto-scaling to reduce the large vari-
ations in response data for different channels. To visualize the cluster trends of vapor sam-
ples, PCA was performed on the normalized response matrix. PCA is a conventional unsu-

pervised linear method for information concentrating, noise removing and data visualization
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[165]. By this method, principal components (PC) could be constructed by linear combi-
nation of the original variables [159]. Based on these uncorrelated PCs, samples could be
mapped in a low dimensional space for discriminating [160, 192]. The PC score plot of total
63 samples is shown in Figure 4.9. Because PCA is an unsupervised method, the samples
were clustered together only based on the similarities and differences in their PC scores. In
PC1-PC2 space (Figure 4.9a), each of 4 single odors occupied a separate region, and all bi-
nary mixtures were lying in new clusters. PC1 contained mainly information (88.78%) of
original response matrix. Besides, for PC1, 4 single vapors were sorted by concentration
in descending order. It indicated that the concentration information for vapors would be
contained in PC1. In the PC1-PC3 space (Figure 4.9b), most of samples were patterned in
individual clusters. But an overlapped was observed in the samples from PA and PA+OA
vapors. In addition, a well clustering result was observed in PC2-PC3 space (Figure 4.9¢)
excepting a superposition between HA (Cg) and HPA (C5) vapors. We can also find that for
single vapor, the sort by PC2 is similar with that by molecular size. It might be contributed
by the size effect of the imprinted template molecules. Besides, we can also find that the
VOCs mixture samples were clustered on the centerline between two source VOCs in PC1-
PC2 and PCI1-PC3 spaces. However, in PC2-PC3 space, we did not find the similar result.
It indicated that we could find a balance role in PCA spaces partly. The reason would be
explained by the different concentrations for VOCs mixtures or pure organic acids.

To investigate the pattern recognition ability of MISG-LSPR multichannel sensor plat-
form, LDA was applied in this study. Different from PCA, LDA is a supervised classifier by
finding a discriminant function (DF), which is a linear combination of the original variables
(features of the sensor responses) that tries to maximize the variance between groups and
minimize the variance within groups [193, 194]. More detail information about LDA can be
found else here [195-198]. Here, the optimal transformation in LDA was achieved by min-
imizing the intragroup distances and maximizing the intergroup distances simultaneously,
thus the best group discrimination could be obtained [199]. Similar to PCA, 2 discrimina-
tion functions were obtained by a linear combination of the 4 variables in the sensor array.
Consequently, all samples could be plotted in a LDA space as shown in Figure 4.10. It
demonstrates the clear clustering of 7 distinct groups, which correspond to 4 single and 3 bi-
nary mixtures of organic acid vapors, with no overlap being observed. Taking into account a
small number of samples in this study, full leave-one-out cross-validation (LOOCV) method
was applied to validate LDA models in this study [200, 201]. The LOOCYV of LDA scores
revealed a classification accuracy of 100%. It suggested that the multichannel LSPR-MISG
sensor platform developed in this study could be applied on the pattern recognition of single

or binary mixture of organic acid.
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Fig. 4.9 PCA score plots of the multichannel responses for 63 samples from PA, HA, HPA,
OA, binary mixture of PA+HA, PA+OA and HA+OA.

4.3.4 Discussion

In this chapter, MISGs were designed for fatty acid vapor detection. Molecules with sim-
ilar structure to imprinted molecules (with carboxyl group, different carbon chain length)
were selected for MISGs selectivity evaluation. Results indicated that a selectivity shown to
the target molecule. In addition, PCA results indicated that concentration information was
shown in PC1 and molecular size information was shown in PC2. It indicated that molecu-
lar information (size, functional group and carbon chain length) can be captured by MISGs
layer. Therefore, MISGs contained with different type of imprinted molecules would be

developed for odor sensing system.
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of PA+HA, PA+OA and HA+OA. Oval outlines indicate group of organic acid samples at
99% confidence level.

4.4 Conclusion

In summary, a MISG coated Au nano-island film was developed for determination of organic
acids vapors selectively. The MISG reaction solution was spin coated on the Au nano-island
layer. The results demonstrated that the adsorption capacity of pure TiO, sol-gel matrix
was weak. In-situ response of HA-MISG was verified to be fast, selective and reversible.
Eventually, by changing the template molecules in MISG reaction solutions, a 4 channels
MISG-LSPR multichannel sensor array was constructed for the determination of 4 organic
acids vapors (PA, HA, HPA and OA) in single and their binary mixtures. PCA and LDA were
employed for pattern recognition of the response matrix. We also find a partly balance role
between mixture VOCs and their source VOCs in PCA spaces. A 100% classification rate
was achieved by leave-one-out cross-validation technique for the LDA model. It indicated
that a sensor array combined MISG with LSPR could be an effective method for organic
acid odor pattern recognition. This research offers some useful technologies for developing

sensor system for organic acid from human body odor.






Chapter 5

Development of MISG based LSPR
sensor for detection of volatile
cis-jasmone

5.1 Introduction

Plants have evolved a variety of sophisticated mechanisms to withstand stresses imposed by
salt, cold, heat, herbivore attack, or pathogen infection [202]. A critical mechanism for self-
protection, as well as a communication signal between plants, is the production of complex
mixtures of plant volatile organic compounds (PVOCs) [203]. PVOCs can not only attract
pollinators or seed-dispersing animals, but also repel potential herbivores [204]. Recently,
much effort has been focused on clarifying the metabolic pathways and functions of these
PVOC:s [205, 206]. Sobhy et al. suggested that (E)-2-hexenal, methyl salicylate, cis-jasmone
(CJ), and methyl benzoate were the main compounds in the PVOCs [207]. In particular, jas-
mone released by flowers or leaves can be used as a chemical cue for herbivorous insect
infestation [208]. In addition, Birkett et al. reported that the biosynthesis of CJ was asso-
ciated with stress-induced jasmonic acid or octadecanoid pathways [186, 209, 210]. Bruce
et al. reported that CJ treatment of crop plants, such as soybeans and potatoes, directly de-
fended against aphids, and also initiated PVOC release that repelled natural enemies [211].
Therefore, CJ can be regarded as a vital biomarker for plant pest and disease monitoring in
agriculture [212]. Currently, PVOCs has been analyzed with gas chromatography/mass [36].
However, this is not suitable for real-time PVOC monitoring because it is time consuming,

costly, and not portable [213, 214]. Therefore, alternative sensing strategies need to be con-
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sidered for real-time monitoring of CJ vapors with high sensitivity, selectivity, and response
speeds for agricultural applications [215].

The aim of this chapter was to develop a molecularly imprinted sol-gel (MISG) based
localized surface plasmon resonance (LSPR) for detection of CJ. As illustrated in Figure 5.1,
Au nano-islands were fabricated by vacuum sputtering and annealing. Then, a three dimen-
sional ”imprint” of CJ molecules within the MISG was created around the Au nano-islands.
An optical sensor was developed for CJ detection by monitoring changes in the RI by ab-
sorbance spectra. The functional monomer was a vital element of the MISGs, and was in-
vestigated to enhance imprinting effects for sensitivity. Interactions between the functional
group of functional monomers and imprinted molecules are important for cavities generation
in MISG layer. In addition, the effect of the ratio of matrix material to functional monomer
on the CJ response was examined. The feasibility of the MISG-LSPR sensor for CJ vapor

was evaluated.

Sol-gel Functional monomer  cis-Jasmone AuNPs Sensing volume

Fig. 5.1 Schematic of MISG-coated Au nano-islands with functional monomers for selective
ClJ vapor detection.

5.2 Materials and Methods

5.2.1 Materials and instrumentations

Tetrabutoxy titanium (TBOT), iso-propanol, CJ, limonene, y-terpene, titanium tetrachloride

(TiCly), acetone, and ethanol were purchased from Wako Pure Chemical Industries, Japan.
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3-aminopropyl tri-ethoxysilane (APTES) was purchased from Shin-Etsu Chemical, Japan.

a-pinene, trimethoxyphenylsilane (TMP), triethoxy phenylsilane (TEP), trimethoxy(2-phenylethyl)silane
(TM2P) were purchased from Sigma-Aldrich Co. LLC, USA. Benzyltriethoxysilane (BTE)

was purchased from Tokyo Chemical Industry Co., Japan. All reagents were used as re-

ceived. Fourier transform-infrared spectroscopy (FT-IR, Nicolet iS 5, Thermo Fisher Scien-

tific, USA) was used to analyze MISG-AuNP films before and after CJ absorption. Scanning

electron microscopy (SEM, SU8000, Hitachi) and atomic force microscopy (AFM, Dimen-

sion Ion, Bruker IXS) were used to image morphologies of AuNP-coated NISGs/MISGs.

5.2.2 Preparation of MISG reaction solution

Preparation of the MISG reaction solution was reported previously [144]. Briefly, it was
prepared by dissolving 0.441 mmol (150 pL) TBOT precursor, 0.304 mmol (50 pL) CJ tem-
plates, and 50 pL of functional monomers (TMP, TEP, TM2P, or BTE) in 2 mL of iso-
propanol while stirring. The concentrations of TMP, TEP, TM2P, or BTE in the MISG
solutions were 0.252 mmol, 0.208 mmol, 0.221 mmol, and 0.197 mmol, respectively (see
Figure 5.2 for structures). Then, 0.132 mmol (25 pL) of TiCl, was added to initiate the re-
action. Afterward, the MISG reaction solution was pre-hydrolyzed in a 60 °C water bath for
1 h while stirring. Finally, the solution was stirred at room temperature (25 °C) for 8 h to
complete the MISG reaction.

5.2.3 MISG-coated LSPR sensor preparation

A 12-mm 9-mm glass substrate was ultrasonically cleaned in ultrapure water, acetone, ethanol,
and then exposed to an argon plasma (PDC-001, Harrick plasma, USA). It was then im-
mersed in a 1:10 (v:v) APTES ethanol solution for 8 h. After being cleaned with ethanol and
dried with flowing nitrogen, the sample was put into a quick coater (SC-701 HMCII, Sanyu
electron, Japan) for a 3-nm deposition of AuNP. Thermal annealing was then performed in a
muffle furnace (SSTS-13K, ISUZU, Seisakusho, Japan) at 500 °C for 2 h, followed by cool-
ing to room temperature. The sample was then subjected to sputtering and annealing again
under the same conditions to form a high-sensitivity LSPR substrate. Then, 20 pL of the
MISG reaction solution was spin-coated on the Au nano-islands at 3000 rpm for 1 min. In
the last step, the sample was kept at 130 °C for 1 h to finish the MISG fabrication and to
evaporate the templates. All samples were stored under vacuum to remove volatile organic
compounds in the MISGs.
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Fig. 5.2 Chemical structures of the matrix precursor, four functional monomers, and four
types of PVOCs.

5.3 Results and discussion

5.3.1 Functional monomer selection

Strong noncovalent interactions between the functional monomers and the templates were
critical for forming three-dimensional binding cavities during polymerization [216]. The
functional monomer was a critical for MISGs preparation. CJ is very volatile, with a vapor
pressure of 0.029 mm Hg at 25 °C. Therefore, it could be evaporated from the NISGs/MISGs
layer with clean flowing air. Given the chemical structure of CJ (Figure 5.2), functional
monomers with aromatic rings would be appropriate for cavity generation in the MISGs
via electron, Van der Waals, and hydrogen-bond interactions [217, 218]. Therefore, four
function monomers (TMP, TEP, TM2P and BTE) were considered (Figure 5.2).

Au nano-islands coated with various MISGs were optically characterized. Figure 5.3
plots differences in their UV-vis spectra. Relative to the bare sample, plasmon peaks in
the NISG/MISG-coated samples shifted to the red because of the MISGs. In addition, rel-
ative to the MISG-modified sample, the surface plasmon (SP) peaks of the samples coated
by MISG with functional monomers shifted to the blue. Their surface morphologies were
imaged with SEM (Figure 5.4) and AFM (Figure 5.5, Table 5.1). SEM of the bare sample re-
vealed that Au nano-islands were uniformly deposited on the substrate, which would induce
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a stronger LSPR effect between Au nano-islands. The islands were covered by MISG/NISG
films, which produced the diverse absorbance spectra. The surfaces of MISG-coated sam-
ples varied with functional monomers, which indicated that the sol-gel process was affected
differently by the functional monomers (TMP, TEP, TM2P, and BTE).
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Fig. 5.3 Absorption spectra for the bare substrate, a NISGs coat, and MISGs coatings with
different functional monomers.

Fig. 5.4 SEM images of bare (a), NISG (b), TMP-NISG (c), MISG (d), TMP-MISG (e),
TEP-MISG (f), TM2P-MISG (g) and BTE-MISG (h) coated samples.

Attenuated total reflection FT-IR spectra were plotted in Figure 5.6. The broadened
band at 1400-1480 cm™! was attributed to stretching of the benzenoid ring. There were
benzenoid ring peaks in the functional monomers contained in the NISGs/MISGs; thus, the
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Fig. 5.5 AFM images of bare (a), NISG (b), TMP-NISG (c), MISG (d), TMP-MISG (e),
TEP-MISG (f), TM2P-MISG (g) and BTE-MISG (h) coated samples.

Table 5.1 The roughness of Bare, NISGs and MISGs with different functional monomers
coated samples.

Roughness Bare NISG TMP-NISG MISG TMP-MISG TEP-MISG TM2P-MISG BTE-MISG

R, (nm)  3.839 11.70 36.00 102.00 57.80 32.30 48.90 27.00
R, (mm) 3.08 859 25.60 86.60 46.90 23.10 37.30 20.60

monomers were polymerized in the sol-gel films. The strong band at 1620-1750 cm™! was

attributed to C=0 stretching of CJ, as was observed in the MISG-TMP- and MISG-TM2P-
coated samples after gas absorption. Hence, CJ molecules diffused to the MISGs cavities
(Figure 5.2). In addition, lower-energy peaks appeared in the MISG- and MISG-BTE-coated
samples. In contrast, there were no C=0 absorption peaks in the NISG-modified samples,
which indicated less gas absorption.

In-situ responses of NISG-, TMP-NISG-, MISG-, TMP-MISG-, TEP-MISG-, TM2P-
MISG-, and BTE-MISG-coated samples to CJ vapor (10.56+0.96 ppm) were measured by
absorption changes A A, given by Formula 5.1.

AA = Agyy — Ay, (5.1)

where A,;, was the absorption in air, and A,,; was the absorption in the PVOC vapor.

gas
Both the CJ vapor generation and the sensing measurements were performed at room tem-
perature.

Figure 5.7a illustrated that no responses to CJ vapor were observed for NISG-modified

LSPR sensors, which indicated that CJ absorption by the pure sol-gel matrix was poor, as
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Fig. 5.6 FT-IR spectra of NISG-, TMP-NISG-, MISG-, TMP-MISG-, TEP-MISG-, TM2P-
MISG-, and BTE-MISG-coated samples before and after CJ vapor absorption.

reported previously [219]. The responses to CJ vapor for NISG/MISG-coated samples are
summarized in Figure 5.7b. MISGs without functional monomers exhibited lower responses
than did the TMP-MISGs and TM2P-MISGs, indicating that the functional monomers im-
proved the MISG responses and response speeds to target molecules. The TEP and BTE
functional monomers had lower responses, indicating that functional monomers associated
with -OCH2CH3 (TEP and BTE) were less effective in enhancing CJ imprinting than those
containing -OCH3 (TMP and TM2P). In addition, NISG-coated samples with the functional
monomer TMP were studied. As shown in Figure 5.7a, the affinity of NISGs to CJ vapor
increased by adding TMP because of the TMP-NISG matrix effect. The response of TMP-
MISGs was 2.25 times that of the TMP-NISGs. The larger sensitivity of the TMP-MISGs
was attributed to both the matrix effect and imprinting. Therefore, TMP appeared to be the

optimal functional monomer for the CJ-MISGs.
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Fig. 5.7 Real-time responses for NISG-, MISG-, TMP-MISG-, TEP-MISG-, TM2P-MISG-,
and BTE-MISG-coated samples (a) and their quantitative responses (b). Responses were
obtained for a 600-s CJ vapor flow (10.56+0.96 ppm), followed by a 600-s air flow.

5.3.2 Optimization of the TBOT/TMP ratio

Imprinting with MIP materials was affected by the ratio of the matrix to the functional
monomers [219]. Specifically, the ratios of matrix material (TBOT) to functional monomer
(TMP) were adjusted to be 75/125, 100/100, 125/75, 150/50, and 175/25 (pL, v/v) to opti-
mize the LSPR sensor for CJ detection. UV-vis absorption spectra vs. the ratios were plotted
in Figure 5.8, where A, ,, increased and its wavelength was blue-shifted as the amount of
TMP decreased. SEM and AFM images for these MISGs (Figure 5.9, 5.10, Table 5.2) re-
vealed that the size of the TiO, sol-gel was affected by the ratios. In particular, larger TiO,
discs were formed by a higher TBOT/TMP ratio.

In-situ responses of LSPR sensors coated with MISGs having the various TBOT/TMP
ratios were plotted in Figure 5.11. The results indicated that sensitivity was affected, and that
Au nano-islands coated by MISG-TMP with the ratio TBOT/TMP=150/50 had the highest
ClJ sensitivity.

Table 5.2 The roughness of MISGs coated samples with different ratios of TBOT to TMP
(viv).

The ratio of TBOT to TMP (v:v)

75:125 100:100 125:75 150:50 175:25
R, (nm) 92.1 98.4 106.0 57.8 96.3
R, (nm) 67.2 74.5 80.4 46.9 76.6

Roughness
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Fig. 5.8 Absorption spectra for TMP-MISG-coated samples at different TBOT/TMP (v/v).

Fig. 5.9 SEM images of samples coated with MISG at TBOT/TMP=75/125 (a), 100/100 (b),
125/75 (c), 150/50 (d), 175/25 (e) (pL, v:v).

5.3.3 CJ detection with a MISG-coated Au nano-island sensor

Both the shape and correct orientation of the functional groups enabled selective re-binding

of the imprinted target by subsequent removal of the template binding sites during sol-gel

processing. However, other PVOCs, specially terpene molecules, were present in the am-

bient environment and could be captured in MISG cavities. To evaluate the selectivity of

the MISG-coated sensors, the three primary terpenes o-pinene, limonene, and y-terpinene

(Figure 5.2) were tested as interference PVOCs. All the responses were normalized to these

concentrations (Formula 5.2)
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Fig. 5.10 SEM images of samples coated with MISG at TBOT/TMP=75/125 (a), 100/100
(b), 125/75 (c), 150/50 (d), 175/25 (e) (pL, v:v).
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Fig. 5.11 Real-time responses of samples coated with TMP-MISG at TBOT/TMP=75/125,
100/100, 125/75, 150/50, 175/25 (v/v) (a) and their response summary (b). Responses were
obtained for a CJ vapor flow for 600 s (10.56+0.96 ppm), followed by an air flow for 600 s.

Rnormalized =R/ 1g(Ctest) (52)

where R was the original LSPR sensor response. C,, ; was the testing concentration
of each PVOC; specifically, 10.56+0.96 ppm, 187.72+33.64 ppm, 971.20+58.89 ppm, and
750.05+36.25 ppm for CJ, a-pinene, limonene and y-terpinene vapors, respectively. The
ratios of CJ to interference PVOCs (a-pinene, limonene and y-terpinene) were calculated as
1:18, 1:92, 1:71, respectively.
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The normalized responses of the TMP-MISG-coated LSPR sensors to these interference
PVOCs were plotted in Figure 5.12. The CJ response of the molecularly imprinted sensor
was much higher than that for the interfering molecules. This selectivity of the nanocom-
posite MISG-LSPR electrode was attributed to cavities that matched the shape and size of
the CJ molecule. It has been reported that concentrations in agricultural environments of CJ,
a-pinene, limonene, and y-terpinene are about 85 ppm, 941 ppm, 171 ppm, and 371 ppm, re-
spectively. Therefore, the ratios of CJ to a-pinene, limonene, and y-terpinene in agricultural
environments can be calculated as 1:11, 1:2, and 1:4, respectively, which are larger than that
in present study. It indicated that the sensor developed in present study would have enough

selectivity in agricultural environments.
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Fig. 5.12 Real-time responses of TMP-MISG-modified Au-islands to four types of PVOCs.

Quantitative CJ detection was performed by monitoring changes in the UV-vis absorption
spectra for different CJ concentrations. A baseline signal was first collected in clean air. The
LSPR sensors were then exposed to different CJ concentrations and the absorbances were

obtained, as shown in Figure 5.13. A linear calibration curve was fitted with Formula 5.3.

y = 0.0132 + 0.00233x, R?> = 0.9689; n = 3 (5.3)

The limit of detection LOD=3.494 ppm was calculated as the CJ concentration that re-
sulted in a signal that was at least three times the baseline noise (36/m), where m=0.00233
was the slope of the calibration curve and 6 was the standard deviation. Previous studies
reported that CJ concentrations in shoots, leaves, and flowers were 0-85, 0-125 and 0-114
ppm, respectively [220-222]. Therefore, the sensor here would be sensitive enough for agri-

cultural CJ detection.
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Fig. 5.13 Linear response vs. CJ concentration in air. The limit of CJ detection (LOD) was
3.5 ppm.

5.3.4 Discussion

In this part, the sensitivities of MISGs contained 4 types of functional monomers were de-
tected and compared. Just as former discussed, the absorption of MISGs were consisted
by matrix effect and imprinted effect. The functional group in functional monomers played
an important role in enhancing the selectivity/affinity to molecules with structure similarly
for MISGs. The interaction between VOC molecules and MISGs layer was contributed by
electron, Van der Waals and z-7 effects. It indicated that functional monomers contained
different types functional monomers (such as amino group, carboxyl group, hydroxyl or ben-

zene ring etc.) would be attempted for developing olfaction inspired odor sensing system.

5.4 Conclusion

LSPR sensors based on MISG-modified Au nano-islands was demonstrated for CJ vapor
detection. The absorption of interference PVOCs (a-pinene, limonene and y-terpinene) by
MISG; were tested for CJ selectivity evaluation. The results demonstrated that sensor cov-
ered by MISGs with TMP had the strongest responses. In addition, the matrix to functional
monomer ratio was optimized for better responsively. Under optimal conditions, the volume
ratio TBOT/TMP=150/50 resulted in a 3.494-ppm LOD for CJ vapor. This was attributed
to a porous imprinted composite film with CJ-selective binding sites. Real-time responses
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of the sensors displayed good selectivity, broad linearity, and repeatability. In conclusion,

they are expected to provide sensitive PVOC detection for agricultural applications.






Chapter 6

LSPR sensor array coated
AuNPs@MISGs for PYOCs recognition

6.1 Introduction

Chapter 5 revealed that a molecularly imprinted sol-gel (MISG)-coated LSPR sensor was
effective for cis-jasmone (CJ) vapor detection. Although the selectivity of the sensor was en-
hanced by the MISG coating, its sensitivity was decreased. Recently, molecularly imprinted
polymers (MIPs) have been combined with gold nanoparticles (AuNPs) to amplify the LSPR
causing the hot spot effect [223]. Based on the LSPR coupling between AuNPs in an MIP
and a thin gold film, refractive index (RI) changes can be enhanced for use in optical sens-
ing [224]. Therefore, AuNPs embedded in an MISG (denoted as AuNPs@MISG) should
be effective at enhancing the signal intensity of a sensor while maintaining high selectiv-
ity. In addition, considering the complex nature of the agricultural environment, a multi-
channel sensor array combined with a pattern recognition method should be developed for
plant volatile organic compounds (PVOC) identification.

The primary goal of this chapter is to develop an AuNPs@MISG LSPR sensor platform
to detect and identify PVOCs. As illustrated in Figure 7.1, the sensor consists of an LSPR
sensing layer coated with an MISG layer. The LSPR sensing layer is fabricated by vacuum
sputtering and annealing. An AuNPs@MISG layer is formed around the AuNPs in the sens-
ing layer by spin coating. Sensor responses are captured by monitoring changes in the RI
by absorbance spectra. AuNPs doped in the MISG are expected to increase the signal in-
tensity through the hot spot effect. Critical parameters of the AuNPs@MISG (AuNP size,
amount, and spin coating speed) are tuned to optimize sensitivity. By spin coating MISG so-
lutions with diverse template molecules on AuNPs, a multi-channel optical sensor platform
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for PVOC identification is constructed. The identification capability of the sensor platform
is tested using four PVOCs (CJ, a-pinene, limonene, and y-terpinene) and their binary mix-
tures. Principal component analysis (PCA) and linear discriminant analysis (LDA) are used
to visualize the cluster trends of vapor samples in low dimensions. To assess the poten-
tial of the sensor platform, three common supervised approaches, LDA, k-nearest neighbor
(KNN), and naive Bayes classifier (NBC), are used to establish PVOC identification mod-
els (Figure 6.2). The objective of this study is to develop a new sensing strategy for PVOC
detection in agricultural applications.

Plant volatile organic compounds (PVOCs) Moleculary imprinted sol-gels (MISGs)
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Fig. 6.1 Schematic of AuNPs@MISG-coated Au nano-islands for selective PVOC detection.

6.2 Experimental

6.2.1 Materials, chemicals and instrumentations

Titanium tetrabutoxide (TBOT), iso-propanol, CJ, limonene, y-terpiene, titanium tetrachlo-
ride (TiCly), acetone, and ethanol were purchased from Wako Pure Chemical Industries Co.,
Ltd. (Osaka, Japan). (3-Aminopropyl)triethoxysilane (APTES) was purchased from Shin-
Etsu Chemical Co., Ltd (Tokyo, Japan). AuNP suspensions (NP diameter: 10, 20, 30, and
40 nm), a-pinene, and trimethoxyphenylsilane (TMP) were purchased from Sigma-Aldrich
(St. Louis, MO, USA). All reagents were used as received. Scanning electron microscopy
(SEM; SU8000, Hitachi, Japan) was used to image sensor morphology.
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Fig. 6.2 Schematic of AuNPs@MISG-coated Au nano-islands sensor array for selective
PVOC detection.

6.2.2 Preparation of AuNPs@MISGs reaction solution

A typical experiment was described here. First, TBOT (0.441 mmol, 150 pL) was dissolved
in isopropanol (2 mL) as a precursor. Then, CJ, a-pinene, limonene, or y-terpinene (50 pL)
as a template material and TMPS (0.252 mmol, 50 pL) as a functional monomer were added
with stirring. TiCl, (0.132 mmol, 25 pL) was added to initiate the reaction and then the
MISG reaction solution was pre-hydrolyzed in a water bath at 60 °C for 1 h with stirring. The
mixture was vigorously stirred for 8 h at room temperature (20 °C) to complete the MISG
reaction. Finally, AuNP suspension (50 pL) was added to the hydrolyzed MISG solution
while stirring. Before spin coating, the reaction solution was stirred at room temperature for
8 h.

6.2.3 AuNPs@MISGs coated LSPR sensor fabrication

Briefly, a glass substrate (12x9 mm) was ultrasonically cleaned in ultrapure water, acetone,
and ethanol and then immersed in a 1:10 (v:v) APTES/ethanol solution for 8 h. After being
cleaned with ethanol and dried with flowing nitrogen, a 3-nm-thick layer of AuNPs was
deposited using a quick coater (SC-701 HMCII, Sanyu Electron, Japan). The substrate was
heated in a muffle furnace (SSTS-13K, ISUZU, Seisakusho, Japan) at 500 °C for 2 h and
then cooled to room temperature. The sample was sputtered and annealed again under the
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same conditions to form a high-sensitivity LSPR substrate. The MISG reaction solution (20
pL) was then spin-coated on the AuNP layer for 1 min. Finally, the sample was annealed
at 130 °C for 1 h to complete MISG fabrication and evaporate the template molecules. All
samples were stored under vacuum to remove VOCs from the MISG layer.

6.3 Results and discussion

6.3.1 Effect of Au NP size on LSPR

Because the size of AuNPs is a critical factor affecting their LSPR signals, MISG-coated
AuNPs with diameters of 10, 20, 30, and 40 nm were considered. The typical features of
the MISG-coated samples were analyzed using UV-vis spectroscopy and SEM, as shown
in Figure 6.3 and 6.4, respectively. Relative to that of the MISG-coated sample, the LSPR
peaks of the AuNPs@MISG-coated samples were blue-shifted. In addition, the surfaces
of the AuNPs@MISG-coated samples varied with the AuNP size, indicating that the sol-
gel process was affected by the diameter of the AuNPs. The responses of the MISG- and
AuNPs@MISG-coated samples to CJ vapor were measured by the change of absorption AA,
which was calculated using Formula n 5.1.
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Fig. 6.3 Absorption spectra of MISG-coated samples with different size of AuNPs.

The sensitivity to CJ vapor of various MISG-coated samples are summarized in Fig-
ure 6.5. The MISG without AuNPs offered lower sensitivity than that of the AuNPs@MISG-
coated samples, revealing that the AuNPs improved the response of the MISG to target
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Fig. 6.4 SEM images of control (a) and MISGs with 10-nm (b), 20-nm (c), 30-nm (d), and
40-nm (e) AulNPs.

molecules. The response of AuNPs@MISG-coated sensor with 30-nm AuNPs was 6.33
times that of the one without NPs. An SEM image of an AuNP layer is illustrated in Fig-
ure 6.6a. The particle size distribution histogram of the spherical AuNPs was analyzed by
ImagelJ (Figure 6.7). The analysis indicated that the diameter of the AuNPs on the substrate
was 34.13+9.41 nm, which is close to that of the AuNPs in the MISG (30 nm). The high
sensitivity of the sensor was therefore caused by hot-spot coupling between the AuNPs on
the substrate surface and those in the MISG [225]. Therefore, 30 nm is the optimal size for
the AuNPs in the MISG.

6.3.2 Optimization of the amount of AuNPs

To obtain the best performance for PVOC detection, the effect of the amount of AuNPs on
sensing behavior was investigated. UV-vis spectra and SEM images of MISG samples with
different amounts of AuNPs are presented in Figure 6.8 and 6.9, respectively. The responses
of the AuNPs@MISG-coated samples to CJ vapor were measured and are depicted in Fig-
ure 6.10. Evidently, the sensitivity of the sensors increased with the AuNP concentration
initially and then decreased. The results revealed that the sensor coated with the MISG
containing 20 pL of 30-nm AuNPs had the highest sensitivity of those investigated.
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Fig. 6.5 Response effected by AuNPs size in MISGs.

Fig. 6.6 SEM images of bare (a), MISG s _jasmone™ (0); MISG_pinene (€)s MISGiinonene- (d),
and MISG, _¢rpiene- (€), NISG- (f), and AuNPs doped NISG-coated (g) sample.

6.3.3 Optimization of spin coating speed

The thickness of the sensing film influences the sensitivity of LSPR sensors [132]. Here, spin
coating speeds of 2000, 3000, 4000, and 5000 rpm were selected to optimize the thickness
of the AuNPs@MISG coatings. The sensitivities to CJ vapor of samples coated with the
optimal AuNPs@MISG solution at different coating speeds are illustrated in Figure 6.11.
A thinner MISG layer exhibited lower selectivity for target molecules. However, a layer
that was too thick would have a long recovery time [144]. Considering the observed sensor

responses, the optimal spin coating speed was selected as 3000 rpm in the present study.
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Fig. 6.7 Particle size distribution histogram of spherical AuNPs determined from bare sample
(Figure 6.6 a). SEM image was analyzed by ImageJ. The diameter of AuNPs was 34.13+9.41
nm.
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Fig. 6.8 Absorption spectra of MISG-coated samples with different amount of 30-nm AuNPs.

6.3.4 CJ detection with the optimized AuNPs @MISG-coated LSPR sen-
sor
To evaluate the interference immunity of the AuNPs@MISG-coated sensor, it was exposed

to the three primary PVOCs: a-pinene, limonene, and y-terpinene. All the responses were

normalized to the PVOC concentrations as chapter 5. The normalized in situ response of the
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Fig. 6.9 SEM images of control (a), and MISGs with 30 nm AuNPs 5-pL (b), 10-pL (c),
20-pL (d), 30-pL (e), 50-pL (), 70-pL (g), and 90-pL (h).
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Fig. 6.10 Response effected by Au nanoparticles (30 nm) amount in MISGs.

optimized AuNPs@MISG-coated LSPR sensor to these interferents is shown in Figure 6.12.
The response to CJ was much higher than that to the interfering PVOCs. This indicates that

the developed sensor has sufficient interference immunity for use in agricultural applications.
A linear train was fitted with Formula 6.1.
y = 0.03758 4+ 0.00278x, R* = 0.9402;n = 3 (6.1)

The limited of detection LOD=3.07 ppm was calculated as the CJ concentration that
resulted in as signal that was at least three times the baseline noise (30/m).
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Fig. 6.12 Real-time responses of AuNPs@MISG;-modified Au-islands to four types of
PVOCs. Responses were normalized by concentration.

6.3.5 AuNPs@MISGs-coated LSPR sensor array

Although the sensitivity of the sensor was enhanced because of the hot spot effect, the re-
sponse intensity of the sensor was affected by the high concentrations of interfering PVOC:s.
To address this problem, an AuNPs@MISG LSPR sensor array was constructed for iden-
tification and detection of PVOCs. Four types of AuNPs@MISG reaction solutions were
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Fig. 6.13 Linear responses vs. CJ concentration in air. The limit of detection (LOD) was
3.07 ppm.

prepared using the optimal preparation conditions. By spin coating these solutions at 3000
rpm on the AuNP-coated surface, a sensor array was developed for pattern recognition of
PVOC:s (Figure 6.6). The sensor array included five channels: bare, MISG;, MISG,,
MISGiimonene> and MISG, _icrpinene-

The response characteristics of the array to four single PVOCs (CJ,a-pinene, limonene,

—pinene>

and y-terpinene) and four binary mixtures (CJ+a-pinene, CJ+limonene, a-pinene+limonene,
and limonene+y-terpinene) were investigated. For each type of vapor, three vapor flow rates
(0.3, 0.5, and 0.7 L/min) were measured at each concentration, and the measurements were
repeated three times. Therefore, a data set containing 72 samples (8 PVOCsX3 flow ratesx3
repeats) was collected for subsequent research. Both PVOC vapor generation and sensing
measurements were performed at room temperature.

Correlation analysis was carried out initially to evaluate the relationship of each channel.
The Pearson correlation coefficient was calculated using Formula 6.2 [142].

N

¥ (5 = D0 - )
Cor(z.5) = ——— 6.2)

N N
X (xi- %) - T 0= ¥’

where, X and y indicated response vectors for 2 channels. x and y are the mean values

of vector X and y, respectively. N is 72, the dimension of vector X or y.
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Figure 6.14 reveals there was a low correlation (under 0.4) between the bare and MISG-
coated channels, indicating that the bare channel has different information to others. Because
the bare LSPR sensor has low selectivity for the target molecules, the response of the bare
channel would be related to the concentration of the PVOCs. In contrast, the responses of
the MISG-coated channels contained contributions from the MIP and matrix effects, which

increase selectivity for target molecules.

CHI CH2 CH3 CH4 CHS5

CHI1 -0.05 -0.17

CH2

CH3

CH4

CHS

Fig. 6.14 Correlation matrix for sensor array. CH1, CH2, CH3, CH4, and CHS are bare,
MISG;-, MISG,_pinene-» MISGy imonene-> and MISG -coated sample, respectively.

y—Terpiene

To visualize the clustering trends of vapor samples in low dimensions, PCA was per-
formed on the normalized response matrix (M7,45). The first three principal components
(PCs), which captured 84.33% of the cumulative variance proportion of the response data,
are plotted in Figure 6.15. In PCA space, only limonene (PC1-PC2 space, Figure 6.15a) and
y-terpinene (PC2-PC3 space, Figure 6.15¢) samples formed differentiable clusters. It was
difficult to distinguish clearly between the groups for other categories, such as the binary
mixtures.

The response matrix was also analyzed by LDA. Unlike PCA, LDA is a supervised ap-
proach that aims to achieve an optimal transformation by minimizing the intragroup dis-
tances and maximizing the intergroup distances simultaneously [226-228]. Figure 6.16
shows 72 samples from eight clusters plotted in LDA spaces. In the LDA1-LDA?2 space (Fig-

ure 6.16a), CJ, y-terpinene, CJ+limonene, and limonene+y-terpinene can be separated eas-
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Fig. 6.15 PCA score plots of the responses of 72 samples from four PVOCs (CJ, a-
pinene, limonene, and y-terpiene) and their binary mixtures (CJ4+a-pinene, CJ+limonene,
a-pinene+limonene, and limonene+y-terpiene).

ily. Considering LDA1-LDA2 and LDA2-LDA3 (Figure 6.16b) simultaneously, a-pinene
and limonene occupied separate regions. We also found overlap between CJ+a-pinene and
a-pinene+limonene in all LDA spaces. This means that it is hard to separate the PVOCs in

low-dimension spaces. Therefore, pattern recognition approaches need to be explored and

evaluated.

6.3.6 Identification model calibration

To investigate the ability of the AuNPs@MISG-coated LSPR sensor array to discriminate
various types of PVOCs, three commonly used classification frameworks (LDA, KNN, and
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Fig. 6.16 LDA score plot of the first 3 discriminant factors achieved from the response matrix
of 72 samples from four PVOCs (CJ, a-pinene, limonene, and y-terpinene) and their binary
mixtures (CJ+a-pinene, CJ+limonene, a-pinene+limonene, and limonene+y-terpinene).

NBC) were used. KNN has been widely applied as a supervised pattern recognition ap-
proach because of its robust nature and suitability for limited sample sets [229]. The main
assumption of KNN is that the closer the samples, the more likely it is that they belong in
the same category [230, 231]. Considering the sample size, three nearest neighbors were
considered in the present study. Similarly, NBC is a supervised statistical model established
by calculating the probability that a given sample belongs to a certain class [232]. Because
of its simple structure and ease of implementation, NBC has been widely used [233]. More
details on KNN and NBC can be found elsewhere [234-237].

In this study, 72 samples were divided into train and test sets by the random selection
method [238]. Samples from the train set were used as training models, and samples from
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the test set were used to evaluate the established models. The ratio of samples in the train
and test sets was 7:3. Because the sample partition was random, the performance of the
model was unstable. Therefore, sample partition was repeated 100 times to overcome this
problem. The identification performance of a classification framework was evaluated by
accuracy using Formula 6.3 [165].

Accuracy = ITPs+TNs X 100% (6.3)

TPs+TNs+ FPs+ FNs
where, the true positive (TP) is the event that a positive sample is classified as a positive

example, the true negative (TN) is the event that a negative sample is classified as a negative
example, the false positive (FP) is the event that a negative sample is classified as a positive
example, the false negative (FN) is the event that a positive sample is classified as a negative
example. According to the average accuracies, the optimal model was chosen.

The PVOC identification accuracies for the train and test sets of the three models are
listed in Table 6.1. Other standard performance measures (sensitivity, specificity, preci-
sion, recall, and F1 score) are summarized in Table C.1 and C.2. For each PVOC, the LDA
model showed the highest average accuracy in identifying CJ (99.40+3.20%), y-terpinene
(99.56+1.02%), and a-pinene+limonene (97.49+3.40%). The KNN model readily iden-
tified a-pinene (89.83+8.87%) and limonene (95.57+4.49%). The NBC model exhibited
the highest identification accuracy for mixtures, including CJ+a-pinene (95.30+6.34%),
CJ+limonene (100%), and limonene+y-terpinene (100%). This indicates that the NBC model
was more suitable to deal with complicated samples than the other models. For the train set,
the accuracy of the NBC model reached 97.02+2.79%, which was higher than that of the
LDA model (86.66+2.49%) and KNN model (95.58+8.06%). For the test set, KNN had the
highest accuracy (97.02+2.79%), followed by LDA (94.72+8.52%) and NBC (94.39+9.15%),
indicating that the generalization ability of the KNN model is higher than that of the others.
Considering total average accuracy, KNN had the highest accuracy (96.30+6.03%), followed
by LDA (95.69+6.28%) and then NBC (95.71+6.77%). Overall, we found that KNN was
the optimal model to identify PVOCs based on accuracies for the train and test sets. We also
found that the lowest accuracy achieved by the models was higher than 95%. This indicated
that enough molecular information was captured by the AuNPs@MISG LSPR sensor array
to allow PVOC identification.

6.4 Conclusion

An LSPR sensor coated with an MISG containing AuNPs to amplify the sensing signal
was developed for PVOC detection. The optimal size and amount of AuNPs doped in the
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Table 6.1 PVOC:s identification accuracies of LDA, KNN, and NBC models based on the
sensor array response matrix

PVOCs Modeling approach Train set (%) Test set (%) Total average (%)
Mean SD Mean SD Mean SD
LDA 99.93 0.63 98.87 4.48 99.4 32
cis-Jasmone KNN 97.54 6.63 96.98 3.53 97.26 5.31
NBC 96.98 3.53 91.79 11.3 94.39 8.37
LDA 89.98 42 86.85 13.13 88.42 9.75
a-Pinene KNN 91.1 11.69 88.55 4.55 89.83 8.87
NBC 88.55 4.55 82.74 15.86 85.65 11.67
LDA 98.78 14 93.55 12.81 96.17 9.11
Limonene KNN 97.31 6.29 99.83 0.9 98.57 449
NBC 99.83 0.9 94.54 9.6 97.19 6.82
LDA 99.87 0.34 99.24 14 99.56 1.02
y-Terpiene KNN 97.6 6.13 99.94 0.63 98.77 4.36
NBC 99.94 0.63 98.21 4.58 99.08 3.27
LDA 88.13 4.32 86.86 11.59 87.5 8.75
cis-Jasmone+a-Pinene KNN 92.98 11.17 96.48 4.29 94.73 8.46
NBC 96.48 4.29 94.11 7.87 95.3 6.34
LDA 99.55 1.6 97.74 5.65 98.65 4.15
cis-Jasmone+Limonene KNN 98.94 3.79 100 0 99.47 2.68
NBC 100 0 100 0 100 0
LDA 97.62 2.2 97.35 4.28 97.49 34
a-Pinene+Limonene KNN 89.91 10.69 94.4 3.11 92.16 7.87
NBC 94.4 3.11 93.71 10.77 94.06 7.93
LDA 99.38 1.88 97.33 6.14 98.36 4.54
Limonene+y-Terpiene KNN 99.27 2.99 100 0 99.64 2.11
NBC 100 0 100 0 100 0
LDA 96.66 2.49 94.72 8.52 95.69 6.28
Summary KNN 95.58 8.06 97.02 2.79 96.3 6.03
NBC 97.02 2.79 94.39 9.15 95.71 6.77

MISG were 30 nm and 20 pL, respectively. Under optimal conditions, the sensitivity of the
AuNPs@MISG-coated sensor was 12.33 times higher than that of the equivalent without
AuNPs, which was caused by hot spot enhancement. The real-time responses of the sen-
sor displayed good interference immunity and repeatability. A five-channel AuNPs@MISG
LSPR sensor array was designed to detect and identify four PVOCs alone and in binary mix-
tures. Correlation analysis, PCA, and LDA were used to process the response matrix. The
results indicated that it was difficult to distinguish clearly between the groups for the bi-
nary mixtures. Three supervised modeling approaches (LDA, KNN, and NBC) were used to
establish PVOC pattern recognition models. KNN displayed high accuracy (96.03%), iden-
tifying PVOCs quickly and efficiently. This study demonstrated that an AuNPs@MISG-
coated LSPR sensor array combined with a pattern recognition approach can be used for
PVOC detection and identification, which may become a useful technology for agricultural

applications.






Chapter 7

Conclusion and prospect

7.1 Conclusion

7.1.1 Structure—odor relationship

Progress in the molecular biology of olfaction has revealed a close relationship between the
structural features of odorants and the response patterns they elicit in the olfactory bulb.
Molecular feature-related response patterns, termed odor maps (OMs), may represent infor-
mation related to basic odor quality. Thus, studying the relationship between OMs and the
molecular features of odorants is helpful for better understanding the relationships between
odorant structure and odor.

Firstly, we explored the correlation between OMs and the molecular parameters (MPs)
of odorants by taking OMs from rat olfactory bulbs and extracting feature profiles of the
corresponding odorant molecules. Coefficient maps for molecular parameters turned out to
be clustered in seven groups, and the parameters in each group had a similar effect on the im-
ages of olfactory responses. In addition, we tested how well different models could identify
functional groups when the classification models were established based on olfactory infor-
mation or molecular parameters. The results showed that although classifiers with molecular
parameters as feature quantity were weaker than those with odor map as feature quantity, a
comparative model could be established if it was based on enough molecular features. This
research would be applied in developing biology olfaction based odor recognition sensors.

Secondly, we present a proof-of-concept model by which odor information can be ob-
tained by machine-learning-based prediction from MPs of odorant molecules. The results
showed that Boruta (Confirmed only) SVM has good potential in predicting odor perceptions
rapidly and precisely. It demonstrated that MPs associated with machine-learning models
can be adopted for odor perceptual senses identification.
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7.1.2 Molecular imprinted material coated optical odor sensor

To develop olfaction inspired odor sensor, we presented a possibility to use localized surface
plasmon resonance (LSPR) of Au nanoparticles (AuNPs) to recognize odorants. Molecularly
imprinted sol-gels (MISGs) as employed as a sensitive layer for enhancing the selectivity of
LSPR sensors.

At the beginning, MISGs coated LSPR sensor was prepared for determination of organic
acids vapors selectively. Molecules with similar structure to imprinted molecules (with car-
boxyl group, different carbon chain length) were selected for MISGs selectivity evaluation.
We found that the adsorption capacity of pure TiO, sol-gel matrix was weak. In-situ response
of LSPR sensor was verified to be fast, selective and reversible. Eventually, a multichan-
nel sensor array was constructed for the determination of 4 organic acids vapors in single
and their binary mixtures. Based on principal component analysis (PCA) results, molecular
structure information (such as molecular size and carbon chain length) can be detected and
captured by MISG layer. A 100% classification rate was achieved by leave-one-out cross-
validation technique for the linear discriminant analysis (LDA) model, which indicated that
a sensor array combined MISG with LSPR could be an effective method for organic acid
odor pattern recognition.

Next, a sensitive and selective nanocomposite-imprinted, LSPR sensor for cis-jasmone
vapor was fabricated. The functional monomer and the ratio of matrix materials to functional
monomers in the MISGs were investigated and optimized. Result indicated that MISGs con-
tained the functional monomer trimethoxyphenylsilane at a 3:1(v:v) ratio exhibited a higher
sensitivity and selectivity than other films. The optical sensor would have advantages of low
cost, selectivity, sensitivity, and repeatability. Furthermore, AuNPs were doped in MISGs
for enhancing response intensity by hot spots generation. Size and amount of the AuNPs
were investigated and optimized. It indicated that MISGs contained the 30 nm AuNPs at
20 uL exhibited a higher sensitivity than the other films. Finally, an optical multi-channel
sensor platform was developed to detect PVOCs in single and binary mixtures. The result in-
dicated that k-nearest neighbor model had good potential in identifying PVOCs quickly and
efficiently. Thus, the sensor platform is expected to be a potential tool for PVOCs monitor-
ing in agriculture applications. In additionally, the result indicated that by changing template
molecules and functional monomers, the absorption ability of MISGs can be controlled and
designed. The interaction between VOC molecules and MISGs layer was contributed by
electron, Van der Waals and z-x effects. It indicated that functional monomers contained
different types functional monomers (such as amino group, carboxyl group, hydroxyl or ben-

zene ring etc.) would be attempted for developing olfaction inspired odor sensing system.
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Therefore, MISG was expected to be a talent molecularly recognized materials for develop-

ing olfaction inspired sensing system.

7.2 Prospect

7.2.1 Basic odor clusters and molecular parameters

The odor clustering in olfactory bulb is not well understood due to the limited amount of re-
ported odorant molecules. To discover all the primary clusters may be a massive undertaking
for clarify the mechanism of olfactory perception. The more data that can be acquired, the
higher the model accuracy will be. In this study, only 178 odorants with non-intersecting
labels were considered. Therefore, the model is applicable for limited types of chemicals.
The current model cannot predict the functional groups for molecules with high molecular
weight and complicated structures. In the future, more odor-response images of neuronal
activity in the OB will be investigated to determine the hidden patterns in t-SNE space. Ad-
ditionally, a larger variety of molecular parameters will be considered so that the possibility

of describing an odorant by molecular information closer to the mammal olfaction.

7.2.2 Possibility of machine-learning-based GC-O

Chapter 3 reported a proof-of-concept study aimed at testing the feasibility of ML-based GC-
O. In this study, 10 odor descriptors (OD) were tested due to their relatively larger sample
size and higher occurrence frequency in the selected database. Although 10 descriptors are
obviously not enough for a practical application, the results of this study demonstrate the
possibility that a machine learning approach can be used to obtain sensory information of
GC effluents. Additionally, more models for ODs would be expected if sufficient samples
can be acquired. About 3000 odorants with odor types were reported in existing databases
include Flavornet, GoodScents and SuperScent et al.

As future work, in order to extend the prediction models to more ODs, more odorants
with OD information would be collected and a summarized odor database would be estab-
lished. In fact, the number of prediction models actually needed in a GC-O system may
be not as many as expected. A recent study suggested that the dimensionality of odor per-
cepts may be around 20 or less although our nose has 400 olfactory receptors [239]. This
may mean 20 or less descriptors are enough for their application in GC-O. As shown in Ta-
ble 3.3, multi ODs can be predicted for one compound. These ODs can be used as reference
for panelists to obtain a relatively credible odor evaluation, which can enhance their work

efficiency and accuracy. In future, an enough reliable model system would be established
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rely on adequate samples to instead of panelists for odor type evaluation. In conclusion, the
prediction model combined with descriptor indexing may be a good candidate to replace the
human panelist in GC-O.

7.2.3 Olfaction inspired optical odor sensing system

Although a higher identification sensing platform was developed, information captured by
the sensor array is still not enough to deal with complicated natural environment. For further
improvement in sensitivity of LSPR sensors, AuNPs heterostructure should be considered
and attempted by hot spot effect. In addition, by selecting template molecules and functional
monomers in sol-gel, MISGs affined to odorants with characteristic structures or functional
groups would be designed. Furthermore, we believe that by creating more channels for
sensor array (coated by different polymer or sol-gel), complicated mixture vapors can be
recognized in the future. As illustrated in Figure 7.1, based on inkjet technology, more types
of MISGs can be doped on Au nano-islands, respectively. By a hyperspectral camera, a
time series image data can be captured and analyzed. Finally, OMs can be employed as a
supervised data for creating artificial OMs based on the responses of multi-MISG sensing

platform. Based on these technologies, an olfaction inspired optical odor sensor would be

Mixture A VOCI @ VOC2 ¥ VOC3 XVOC4

developed.

|
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Fig. 7.1 Schematic of hyperspectral camera based muli-MISG-LSPR optcial sensing plat-
form.
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Appendix A

Chapter 2 support information

Table A.1 The list of 178 odorants and their CAS numbers, chemical clusters and t-SNE
results.

Olfactory images Molecular parameters
No. Name CAS Cluster

Dimension 1 ~ Dimension2  Dimension 1 ~ Dimension 2
1 Ethyl propionate 105-37-3 1 0.308139 -1.636572 -4.013656 -0.164298
2 Ethyl butyrate 105-54-4 1 0.740831 -0.914779 -2.678833 -1.153896
3 Methyl caproate 106-70-7 1 4.116115 1.928249 -1.161941 -3.481872
4 Methyl heptanoate 106-73-0 1 4.400900 2.456325 0.004627 -5.879601
5 Ethyl caproate 123-66-0 1 4.103857 1.868916 -6.561180 -9.158452
6 Ethyl acetate 141-78-6 1 -0.597867 -3.402584 -7.224433 6.811835
7 Methyl isocaproate 2412-80-8 1 5.053745 0.341276 -1.703288 -2.271641
8 Ethyl valerate 539-82-2 1 3.422064 1.185465 -1.478769 -3.362447
9 Methyl valerate 624-24-8 1 -0.151081 -1.388754 -2.239833 -1.445676
10 Methyl acetate 79-20-9 1 5.553658 -5.863034 -8.132847 7.409454
11 Methyl 3-methylbutenoate 924-50-5 1 -4.678826 0.870475 -3.336869 0.920892
12 3,7-dimethyloctan-1-ol 106-21-8 2 5.330842 6.790664 2.224548 4.347022
13 Citronellol 106-22-9 2 4.944474 6.653876 -0.802323 -8.985935
14 Geraniol 106-24-1 2 7.101928 -6.798558 -1.023801 -8.971433
15 Nerol 106-25-2 2 2.154527 -10.148940 -1.050802 -8.961532
16 1-hexanol 111-27-3 2 5.655984 3.426531 -0.288197 11.736692
17 1-heptanol 111-70-6 2 4.400446 4.292415 -1.907948 4.784803
18 1-octanol 111-87-5 2 6.474554 4.037191 0.524609 3.650876
19 1-decanol 112-30-1 2 11.364222 5.181892 2.378490 5.246251
20 Isoamyl alcohol 123-51-3 2 8.087529 -2.713978 -3.477695 5.465726
21 9-decen-1-ol 13019-22-2 2 4.997338 6.954799 -0.222486 -8.998510
22 1-nonanol 143-08-8 2 8.240569 3.685157 1.867619 3.945528
23 Phytol 150-86-7 2 -3.118683 -9.460390 7.636538 -12.893249
24 Trans,trans-2,4-hexadien-1-ol 17102-64-6 2 -1.072378 -3.766085 -6.809980 4.291436
25 Lavandulol 1845-51-8 2 -2.980515 -6.876206 -1.590133 -8.613377
26 3-methyl-2-buten-1-ol 556-82-1 2 2.524267 -1.018963 -7.196845 3.229084
27 4-methyl-1-pentanol 626-89-1 2 2.593787 -0.834281 -5.518653 5.753223
28 1-propanol 71-23-8 2 -0.218590 -2.181966 -1.926540 13.824256
29 1-butanol 71-36-3 2 -4.237943 -1.373536 -2.093252 12.839695
30 1-pentanol 71-41-0 2 -7.353788 6.916110 -0.900430 13.160926
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Chapter 2 support information

Olfactory images

Molecular parameters

No. Name CAS Cluster

Dimension 1  Dimension2  Dimension 1 ~ Dimension 2
31 Nerolidol 7212-44-4 2 0.635197 0.328942 7.267100 -10.192150
32 Isobutanol 78-83-1 2 -3.885450 -0.123942 -2.107489 12.843531
33 5-hexen-1-ol 821-41-0 2 2.995946 3.823765 -7.856308 4.098797
34 Cis-2-hexen-1-o0l 928-94-9 2 3.060304 3.245103 -7.607327 4.253326
35 Trans-2-hexen-1-ol 928-95-0 2 4.480986 4.548905 -7.609240 4.253963
36 Cis-3-hexen-1-o0l 928-96-1 2 3.194082 3.661717 -7.692431 4.173042
37 Trans-3-hexen-1-ol 928-97-2 2 3.138133 3.770713 -7.640281 4.222150
38 Ethylbenzene 100-41-4 3 -7.059334 -0.479419 -5.856471 6.852228
39 Propylbenzene 103-65-1 3 -10.556522 -4.958207 -6.138080 7.193122
40 Butylbenzene 104-51-8 3 -10.644025 -5.121360 -6.419690 7.534016
41 P-xylene 106-42-3 3 -9.051429 -0.462666 -6.701300 7.874910
42 M-xylene 108-38-3 3 -8.837407 -0.940557 -6.982909 8.215804
43 Mesitylene 108-67-8 3 -9.713529 -0.834414 -7.264519 8.556698
44 Toluene 108-88-3 3 -9.040840 -0.107798 -7.546129 8.897592
45 1,2,3,4-tetramethylbenzene 488-23-3 3 -8.919945 -2.181804 -7.827738 9.238485
46 1,2,3-trimethylbenzene 526-73-8 3 -8.377890 -1.055092 -8.109348 9.579379
47 O-xylene 95-47-6 3 -8.444178 -0.927918 -8.390958 9.920273
48 1,2,4-trimethylbenzene 95-63-6 3 -8.728199 -1.406018 -8.672567 10.261167
49 Tert-butylbenzene 98-06-6 3 -5.398059 -3.568425 -8.954177 10.602061
50 Isopropylbenzene 98-82-8 3 -10.408720 -4.710147 -9.235786 10.942955
51 Methyl phenylacetate 101-41-7 4 -8.854176 5.905904 1.908405 -3.094372
52 Methyl cinnamate 103-26-4 4 -0.343790 7.793530 4.527574 -4.706611
53 Methyl salicylate 119-36-8 4 -8.854942 2.613182 -6.397805 -5.673913
54 Phenyl acetate 122-79-2 4 -8.973787 5.925920 2.129654 -0.571213
55 Methyl anthranilate 134-20-3 4 8.845433 -8.887504 -5.794615 -5.279344
56 Benzyl acetate 140-11-4 4 -8.786029 6.197205 2.464882 -3.134664
57 Phenethyl hexanoate 6290-37-5 4 9.810109 0.460857 5.916659 -11.069476
58 Phenyl propionate 637-27-4 4 -8.961146 5.818830 2.621772 -2.944608
59 Methyl o-toluate 89-71-4 4 -7.658230 1.023338 3.008999 -1.850014
60 Methyl benzoate 93-58-3 4 -5.681050 9.729186 2.696643 -1.480043
61 Ethyl heptanoate 106-30-9 5 6.712290 5.075457 1.215802 -7.245925
62 Ethyl caprylate 106-32-1 5 6.579837 5.248027 3.028166 -8.261959
63 Methyl octanoate 111-11-5 5 7.681458 5.308768 1.314122 -7.249644
64 Methyl 2-octynoate 111-12-6 5 5.066063 -2.530888 1.861780 -7.122384
65 Methyl trans-2-octenoate 7367-81-9 5 7.774600 5.364214 2.308403 -6.485896
66 Hexane 110-54-3 6 11.805715 -4.756393 0.316227 13.778552
67 Octane 111-65-9 6 7.655288 0.684015 5.084964 6.944221
68 Nonane 111-84-2 6 6.949939 8.091359 4.517381 4.969145
69 Undecane 1120-21-4 6 5.423283 -5.169142 4.588507 11.192247
70 Dodecane 112-40-3 6 5.181754 -10.544674 4.893858 11.158640
71 Decane 124-18-5 6 7.209423 8.545395 4.398122 11.209378
72 Heptane 142-82-5 6 -4.422161 3.006847 1.344280 13.614320
73 2,2 4-trimethylpentane 540-84-1 6 1.581120 -3.993377 5.465401 5.658543
74 Hexadecane 544-76-3 6 5.766831 8.530791 1.988600 -11.751704
75 2,3 4-trimethylpentane 565-75-3 6 -4.173204 -8.960370 5.465511 5.651912
76 2,3-dimethylhexane 584-94-1 6 1.371373 -2.842388 4.301026 6.322262
77 2,4-dimethylhexane 589-43-5 6 1.655887 -3.256643 4.231407 6.405684
78 4-methylheptane 589-53-7 6 2.359899 -2.906029 4.200278 6.433503
79 3-methylheptane 589-81-1 6 2.751822 -3.568203 4.237862 6.371823
80 2,2-dimethylhexane 590-73-8 6 1.917088 -3.766368 4.198862 6.195062
81 2,5-dimethylhexane 592-13-2 6 2.111306 -3.738331 5.432391 5.635077
82 2-methylheptane 592-27-8 6 2.777103 -3.349493 4.130500 6.106297
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Olfactory images

Molecular parameters

No. Name CAS Cluster

Dimension 1  Dimension2  Dimension 1 ~ Dimension 2
83 Tridecane 629-50-5 6 6.933434 9.894933 5.603600 11.087695
84 Tetradecane 629-59-4 6 6.828951 10.600637 5.931582 11.042735
85 Pentadecane 629-62-9 6 1.451709 2.957249 6.156611 11.018596
86 Benzaldehyde 100-52-7 7 -8.252113 1.638883 -1.408840 2.945818
87 Cyclamen aldehyde 103-95-7 7 -5.482128 5.280167 3.909895 -9.598995
38 P-tolualdehyde 104-87-0 7 -10.135870 0.966484 1.804289 0.492592
89 4-hydroxybenzaldehyde 123-08-0 7 -2.345065 11.974445 -8.184002 -2.710606
90 P-anisaldehyde 123-11-5 7 -11.251067 4.360659 1.265178 -1.179405
91 Cinnamaldehyde 14371-10-9 7 -4.095995 -3.163852 2.593487 0.798744
92 2,4-dimethylbenzaldehyde 15764-16-6 7 -9.841910 1.415331 2.593446 -0.125427
93 O-tolualdehyde 529-20-4 7 -9.999970 1.058446 1.564145 1.891187
94 M-anisaldehyde 591-31-1 7 -5.997152 2.212166 2.067555 -1.206375
95 M-tolualdehyde 620-23-5 7 -10.151842 1.419335 1.516890 1.883709
96 Salicylaldehyde 90-02-8 7 -9.354719 4.064882 -7.722842 -4.094855
97 1-octene 111-66-0 8 8.802660 0.414177 9.450730 3.787736
98 Trans-2-octene 13389429 8 9.227975 0.504293 9.146700 3.735935
99 Trans-4-octene 14850-23-8 8 8.737789 0.253822 9.126331 3.769447
100 4-octyne 1942-45-6 8 9.421871 -0.460765 8.779719 4.666908
101 2-octyne 2809-67-8 8 9.733129 0.040741 8.782606 4.675715
102 1,7-octadiene 3710-30-3 8 10.101167 0.078784 9.069393 4.331640
103 Alpha-farnesene 502-61-4 8 6.489703 -3.689738 6.452899 -10.240498
104 2-methyl-2-pentene 625-27-4 8 4.459388 -0.096654 1.732936 7.557686
105  l-octyne 629-05-0 8 8.452683 -4.818006 8.996157 5.155472
106  Cis-4-octene 7642-15-1 8 9.826534 -0.512128 8.725622 3.787148
107 1,7-octadiyne 871-84-1 8 -2.285555 -8.029442 8.850776 5.957025
108  2-methyl-3-buten-2-ol 115-18-4 9 -10.529038 -2.484770 -7.530438 2.622327
109 2-octanol 123-96-6 9 5.464221 2.678425 0.534236 3.652331
110 2-heptanol 543-49-7 9 1.548013 0.987405 -1.944491 4.779940
111 4-heptanol 589-55-9 9 -2.289502 0.806572 1.438010 12.420286
112 3-heptanol 589-82-2 9 2.057118 0.456405 1.638529 12.510844
113 4-nonanol 5932-79-6 9 2.068266 -0.145569 2.558697 11.862305
114 2-pentanol 6032-29-7 9 1.430014 0.071962 -0.874578 13.146917
115  5-nonanol 623-93-8 9 8.611494 2.581700 2.145860 11.821026
116  3-nonanol 624-51-1 9 8.089071 2.789220 2.423837 12.220817
117 2-hexanol 626-93-7 9 1.515785 0.740559 -0.295948 11.725396
118  2-nonanol 628-99-9 9 7.933796 2.853832 2.613899 4.621985
119  Isopropanol 67-63-0 9 -2.884529 0.075958 -1.925531 13.824682
120 Tert-butanol 75-65-0 9 -3.260873 0.061624 -2.100547 12.841559
121 Linalool 78-70-6 9 -3.011682 -6.914612 -2.307149 -9.018756
122 Sec-butanol 78-92-2 9 -1.034204 0.310292 -2.107860 12.843922
123 2,6-dimethyl-5-heptenal 106-72-9 10 5.584676 0.390244 2.346862 -4.171114
124 3-methyl-2-butenal 107-86-8 10 9.432009 -8.236072 -4.230098 3.926343
125  Pentanal 110-62-3 10 0.629453 -6.296503 -3.418399 2.961632
126  Heptanal 111-71-7 10 3.423291 5.717902 -0.908830 -1.348438
127  Decanal 112-31-2 10 7.019346 9.244042 3.362765 -7.541365
128  Octanal 124-13-0 10 7.383443 6.407657 0.566433 -4.211043
129  Nonanal 124-19-6 10 7.562127 6.481057 1.883686 -5.949048
130  Trans-2,4-decadienal 25152-84-5 10 11.321676 5.201920 3.724621 -6.585705
131  Tiglic aldehyde 497-03-0 10 -3.460553 1.183222 -4.173035 3.922369
132 Trans-2,cis-6-nonadienal 557-48-2 10 9.165842 5.241045 2.886755 -4.793063
133 Hexanal 66-25-1 10 3.116937 5.718837 -2.316046 1.454263
134 Trans-2-tridecenal 7774-82-5 10 5.131192 -10.712749 5.898439 -9.826008
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Molecular parameters

No. Name CAS Cluster

Dimension 1  Dimension2  Dimension 1 ~ Dimension 2
135  3-heptanone 106-35-4 11 -6.409458 2.311096 -1.590810 -0.454217
136 2-pentanone 107-87-9 11 5.348936 -8.072342 -4.640771 3.970572
137 5-methyl-2-hexanone 110-12-3 11 -7.002380 1.412871 -1.603469 0.572747
138 2-heptanone 110-43-0 11 5.897741 -1.107662 -1.606404 -0.432622
139 2-octanone 111-13-7 11 -3.629550 4.485588 -0.595361 -2.182909
140  4-heptanone 123-19-3 11 -6.396251 2407712 -6.649379 -9.148906
141 4-methyl-3-penten-2-one 141-79-7 11 -3.826644 0.922202 -3.968557 3.683062
142 3-hexanone 589-38-8 11 -5.836923 2.549238 -2.931934 1.859659
143 2-hexanone 591-78-6 11 -2.306077 -2.982856 -2.909820 1.792638
144 Acetone 67-64-1 11 -0.350873 -9.070539 -8.374978 7.486774
145  Pinacolone 75-97-8 11 -11.909026 -0.456615 -3.236341 2.253358
146  2-butanone 78-93-3 11 -2.523891 -0.761153 -7.438159 6.972857
147 Tert-butylacetic acid 1070-83-3 12 3.044546 -0.999903 -8.590593 -0.594879
148  Butyric acid 107-92-6 12 -0.580538 -0.115720 -11.193853 5.081952
149  Valeric acid 109-52-4 12 -0.514718 4.383894 -7.998776 0.719526
150  Undecylenic acid 112-38-9 12 7.955585 10.057254 5.584067 -8.325031
151  Octanoic acid 124-07-2 12 0.045245 4.529572 -3.518018 -6.820454
152 Trans-2-hexenoic acid 13419-69-7 12 -5.963778 4.845471 -8.236337 -1.069232
153 Trans-2-pentenoic acid 13991-37-2 12 10.047475 -8.861898 -7.868631 0.989849
154  Caproic acid 142-62-1 12 0.497529 4321718 -8.344157 -0.716757
155  2-methylcyclopropanecarboxylic acid ~ 29555-02-0 12 5.485896 -5.120040 -9.312122 0.254366
156  Cyclopentanecarboxylic acid 3400-45-1 12 8.376621 -9.401661 -8.966192 -0.348175
157  Cyclobutanecarboxylic acid 3721-95-7 12 9.322282 -9.228657 -9.329647 0.231090
158  Isovaleric acid 503-74-2 12 9.765827 -8.728375 -9.156543 0.545336
159  2-octynoic acid 5663-96-7 12 5.077249 -2.579765 -3.546829 -6.870459
160  4-pentenoic acid 591-80-0 12 -7.908308 3.111154 -8.114101 1.102013
161  2-methylbutyric acid 600-07-7 12 9.184447 -8.970454 -9.239638 0.656164
162  Formic acid 64-18-6 12 0.345539 5.430430 -10.886136 5.689774
163 Acetic acid 64-19-7 12 -1.543464 5.440512 -11.006661 5.468649
164 4-methylvaleric acid 646-07-1 12 9.470038 -8.279746 -8.002273 0.058014
165  Trimethylacetic acid 75-98-9 12 -1.372275 -4.776557 -9.113965 1.514087
166  Propionic acid 79-09-4 12 -1.427947 5.316183 -11.115910 5.240089
167  Isobutyric acid 79-31-2 12 -2.312307 -2.924788 -9.263040 1.859283
168  2,5-hexanedione 110-13-4 13 -1.334655 -1.277514 -5.278023 0.358780
169  2,3-hexanedione 3848-24-6 13 -1.619389 -1.000069 -5.164887 0.537244
170  2,3-butanedione 431-03-8 13 -1.107181 -1.988397 -6.089848 2.077969
171  3,4-hexanedione 4437-51-8 13 -1.690373 -0.979479 -5.154532 0.619272
172 Acetoin 513-86-0 13 -0.480628 -0.657918 -9.037024 2.208270
173 Diethyl malonate 105-53-3 14 3.481725 -1.979833 -1.919724 -5.742164
174  Dimethyl malonate 108-59-8 14 4.528733 -1.451245 -6.020491 -2.013110
175  2-butoxyethanol acetate 112-07-2 14 9.527465 7.813824 -1.039225 -6.214310
176  Diethyl succinate 123-25-1 14 4.305611 -1.636995 -6.413418 -9.161686
177  Diethyl suberate 2050-23-9 14 4.009269 -1.891318 5.681720 -12.043036
178  Diethyl oxalate 95-92-1 14 3.633788 -2.025922 -5.282857 -2.938382
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Fig. B.1 The accumulative contribution rates of the first 300 PCs for ten OPs.
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Table B.1 Odor perceptions appeared in Sigma Aldrich database.

No.  Words Num No. Words Num No. Words Num No. Words Num
1 Sweet 198 41 Odorless 28 81 Mushroom 5 121  Vinegar 2
2 Green 192 42 Plum 26 82 Roasted 5 122 Animalic 1
3 Fruity 133 43 Orange 25 83 Blossom 4 123 Antiseptic 1
4 Floral 81 44 Balsam 24 84 Gardenia 4 124 Bacon 1
5 Meaty 80 45 Medicinal 24 85 Lavender 4 125  Baked 1
6 Wine-like 81 46 Pear 24 86 Leafy 4 126  Bitter 1
7 Apple 76 47 Strawberry 24 87 Mossy 4 127 Blackcurrant 1
8 Fatty 75 48 Anise 22 88 Phenolic 4 128  Brandy 1
9 Woody 74 49 Melon 22 89 Pungent 4 129 Bread 1
10 Herbaceous 72 50 Fishy 21 90 Tomato 4 130 Butterscotch 1
11 Sulfurous 71 51 Lemon 21 91 Tropical 4 131  Cantaloupe 1
12 Ethereal 65 52 Jasmine 18 92 Warm 4 132 Cashew 1
13 Nutty 63 53 Pepper 18 93 Whiskey 4 133 Cedar 1
14 Spicy 62 54 Raspberry 18 94 Acidic 3 134 Civet 1
15 Oily 58 55 Smoky 16 95 Alliaceous 3 135  Clover 1
16 Earthy 55 56 Camphoraceous 14 96 Carnation 3 136 Coriander 1
17 Pineapple 55 57 Cinnamon 14 97 Celery 3 137 Corn 1
18 Waxy 53 58 Hyacinth 13 98 Cheesy 3 138 Fleshy 1
19 Creamy 52 59 Sour 13 99 Cucumber 3 139 Fresh 1
20 Rose 52 60 Clove 12 100  Dairy 3 140  Garlic 1
21 Musty 48 61 Soapy 12 101 Fennel 3 141  Green bean 1
22 Cheese 47 62 Grapefruit 11 102 Leather 3 142 Hopoil 1
23 Chocolate 46 63 Hazelnut 11 103 Milk 3 143 Iris 1
24 Citrus 46 64 Tobacco 11 104  Pine 3 144  Lard 1
25 Coffee 46 65 Peanut 10 105  Plastic 3 145 Lily 1
26 Vanilla 46 66 Lime 9 106  Rum 3 146 Mango 1
27 Minty 44 67 Potato 9 107  Beer 2 147  Mesquite 1
28 Banana 43 68 Alcohol 8 108  Blueberry 2 148 Metallic 1
29 Berry 43 69 Violet 8 109  Cabbage 2 149  Papaya 1
30 Caramel 43 70 Balsamic 6 110  Caraway 2 150  Paper 1
31 Butter 40 71 Geranium 6 111 Clean 2 151  Peony 1
32 Vegetable 39 72 Hawthorne 6 112 Cranberry 2 152 Peppermint 1
33 Honey 36 73 Jam 6 113 Grassy 2 153 Quince 1
34 Grape 35 74 Maple 6 114 Licorice 2 154  Rhubarb 1
35 Apricot 34 75 Walnut 6 115 Mild 2 155  Rich 1
36 Cherry 34 76 Beef 5 116  Onion 2 156  Spearmint 1
37 Coconut 34 71 Burnt 5 117 Orchid 2 157 Sweet strawberry 1
38 Almond 33 78 Coumarin 5 118  Rancid 2 158  Tallow 1
39 Peach 30 79 Horseradish 5 119  Sage 2 159  Tart 1
40 Faint 29 80 Lilac 5 120 Seedy 2 160  Vanilla honey 1
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Fig. B.2 The grid search process of penalty factor (¢) and RBF parameter (g) for SVM models
by 5-fold cross validation under all parameters. The black circle represents the point at which

the optimal ¢ and g were chosen.
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Table B.4 The list of 1006 molecular parameters in chapter3. All parameters were calculated
by Dragoon 7.0.

No. Name Description Block

1 MW molecular weight Constitutional indices
2 AMW average molecular weight Constitutional indices
3 Sv sum of atomic van der Waals volumes (scaled on Carbon atom) Constitutional indices
4 Se sum of atomic Sanderson electronegativities (scaled on Carbon atom) Constitutional indices
5 Sp sum of atomic polarizabilities (scaled on Carbon atom) Constitutional indices
6 Si sum of first ionization potentials (scaled on Carbon atom) Constitutional indices
7 Mv mean atomic van der Waals volume (scaled on Carbon atom) Constitutional indices
8 Me mean atomic Sanderson electronegativity (scaled on Carbon atom) Constitutional indices
9 Mp mean atomic polarizability (scaled on Carbon atom) Constitutional indices
10 Mi mean first ionization potential (scaled on Carbon atom) Constitutional indices
11 GD graph density Constitutional indices
12 nAT number of atoms Constitutional indices
13 nSK number of non-H atoms Constitutional indices
14 nTA number of terminal atoms Constitutional indices
15 nBT number of bonds Constitutional indices
16 nBO number of non-H bonds Constitutional indices
17 nBM number of multiple bonds Constitutional indices
18 SCBO sum of conventional bond orders (H-depleted) Constitutional indices
19 RBN number of rotatable bonds Constitutional indices
20 RBF rotatable bond fraction Constitutional indices
21 nDB number of double bonds Constitutional indices
22 nTB number of triple bonds Constitutional indices
23 nAB number of aromatic bonds Constitutional indices
24 nH number of Hydrogen atoms Constitutional indices
25 nC number of Carbon atoms Constitutional indices
26 nN number of Nitrogen atoms Constitutional indices
27 nO number of Oxygen atoms Constitutional indices
28 nP number of Phosphorous atoms Constitutional indices
29 nS number of Sulfur atoms Constitutional indices
30 nCL number of Chlorine atoms Constitutional indices
31 nHM number of heavy atoms Constitutional indices
32 nHet number of heteroatoms Constitutional indices
33 nX number of halogen atoms Constitutional indices
34 H% percentage of H atoms Constitutional indices
35 C% percentage of C atoms Constitutional indices
36 N% percentage of N atoms Constitutional indices
37 0% percentage of O atoms Constitutional indices
38 X% percentage of halogen atoms Constitutional indices
39 nCsp3 number of sp3 hybridized Carbon atoms Constitutional indices
40 nCsp2 number of sp2 hybridized Carbon atoms Constitutional indices
41 nCsp number of sp hybridized Carbon atoms Constitutional indices
42 nStructures number of disconnected structures Constitutional indices
43 nCIC number of rings (cyclomatic number) Ring descriptors

44 nCIR number of circuits Ring descriptors

45 TRS total ring size Ring descriptors

46 Rperim ring perimeter Ring descriptors

47 Rbrid ring bridge count Ring descriptors

48 MCD molecular cyclized degree Ring descriptors

49 RFD ring fusion density Ring descriptors

50 RCI ring complexity index Ring descriptors

51 NRS number of ring systems Ring descriptors

52 NNRS normalized number of ring systems Ring descriptors

53 nRO3 number of 3-membered rings Ring descriptors

54 nR04 number of 4-membered rings Ring descriptors

55 nRO5 number of 5-membered rings Ring descriptors

56 nRO6 number of 6-membered rings Ring descriptors

57 nRO7 number of 7-membered rings Ring descriptors

58 nR09 number of 9-membered rings Ring descriptors

59 nR10 number of 10-membered rings Ring descriptors

60 nR11 number of 11-membered rings Ring descriptors

61 nR12 number of 12-membered rings Ring descriptors

62 nBnz number of benzene-like rings Ring descriptors

63 ARR aromatic ratio Ring descriptors

64 D/Dtr03 distance/detour ring index of order 3 Ring descriptors

65 D/Dtr04 distance/detour ring index of order 4 Ring descriptors

66 D/Dtr05 distance/detour ring index of order 5 Ring descriptors

67 D/Dtr06 distance/detour ring index of order 6 Ring descriptors

68 D/Dtr07 distance/detour ring index of order 7 Ring descriptors
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No. Name Description Block

69 D/Dtr09 distance/detour ring index of order 9 Ring descriptors

70 D/Dtr10 distance/detour ring index of order 10 Ring descriptors

71 D/Dtrl1 distance/detour ring index of order 11 Ring descriptors

72 D/Dtr12 distance/detour ring index of order 12 Ring descriptors

73 Wap all-path Wiener index Topological indices
74 S1K 1-path Kier alpha-modified shape index Topological indices
75 S2K 2-path Kier alpha-modified shape index Topological indices
76 S3K 3-path Kier alpha-modified shape index Topological indices
71 PHI Kier flexibility index Topological indices
78 PW2 path/walk 2 - Randic shape index Topological indices
79 PW3 path/walk 3 - Randic shape index Topological indices
80 PW4 path/walk 4 - Randic shape index Topological indices
81 PW5 path/walk 5 - Randic shape index Topological indices
82 MAXDN maximal electrotopological negative variation Topological indices
83 MAXDP maximal electrotopological positive variation Topological indices
84 DELS molecular electrotopological variation Topological indices
85 TIE E-state topological parameter Topological indices
86 MWCO1 molecular walk count of order 1 ‘Walk and path counts
87 MWC02 molecular walk count of order 2 Walk and path counts
88 MWCO03 molecular walk count of order 3 Walk and path counts
89 MWC04 molecular walk count of order 4 Walk and path counts
90 MWCO05 molecular walk count of order 5 Walk and path counts
91 MWC06 molecular walk count of order 6 Walk and path counts
92 MWC07 molecular walk count of order 7 Walk and path counts
93 MWC08 molecular walk count of order 8 Walk and path counts
94 MWC09 molecular walk count of order 9 Walk and path counts
95 MWCI10 molecular walk count of order 10 Walk and path counts
96 SRW02 self-returning walk count of order 2 Walk and path counts
97 SRW03 self-returning walk count of order 3 Walk and path counts
98 SRW04 self-returning walk count of order 4 ‘Walk and path counts
99 SRWO05 self-returning walk count of order 5 ‘Walk and path counts
100 SRW06 self-returning walk count of order 6 ‘Walk and path counts
101 SRWO07 self-returning walk count of order 7 ‘Walk and path counts
102 SRW08 self-returning walk count of order 8 Walk and path counts
103 SRW09 self-returning walk count of order 9 Walk and path counts
104 SRW10 self-returning walk count of order 10 Walk and path counts
105 MPCO1 molecular path count of order 1 (no. of non-H bonds) Walk and path counts
106 MPCO02 molecular path count of order 2 (Gordon-Scantlebury index) ‘Walk and path counts
107 MPCO03 molecular path count of order 3 ‘Walk and path counts
108 MPCO04 molecular path count of order 4 ‘Walk and path counts
109 MPCO05 molecular path count of order 5 Walk and path counts
110 MPC06 molecular path count of order 6 Walk and path counts
111 MPCO07 molecular path count of order 7 Walk and path counts
112 MPCO08 molecular path count of order 8 Walk and path counts
113 MPC09 molecular path count of order 9 Walk and path counts
114 MPC10 molecular path count of order 10 Walk and path counts
115 piPCO1 molecular multiple path count of order 1 Walk and path counts
116 piPCO2 molecular multiple path count of order 2 Walk and path counts
117 piPC0O3 molecular multiple path count of order 3 Walk and path counts
118 piPC0O4 molecular multiple path count of order 4 Walk and path counts
119 piPCO5 molecular multiple path count of order 5 Walk and path counts
120 piPC06 molecular multiple path count of order 6 Walk and path counts
121 piPCO7 molecular multiple path count of order 7 ‘Walk and path counts
122 piPCO8 molecular multiple path count of order 8 ‘Walk and path counts
123 piPC09 molecular multiple path count of order 9 ‘Walk and path counts
124 piPC10 molecular multiple path count of order 10 ‘Walk and path counts
125 TWC total walk count Walk and path counts
126 TPC total path count Walk and path counts
127 pilD conventional bond order ID number Walk and path counts
128 PCD difference between multiple path count and path count Walk and path counts
129 CID Randic ID number ‘Walk and path counts
130 BID Balaban ID number Walk and path counts
131 1S1Z information index on molecular size Information indices
132 TIAC total information index on atomic composition Information indices
133 AAC mean information index on atomic composition Information indices
134 IDE mean information content on the distance equality Information indices
135 IDM mean information content on the distance magnitude Information indices
136 IDDE mean information content on the distance degree equality Information indices
137 IDDM mean information content on the distance degree magnitude Information indices
138 IDET total information content on the distance equality Information indices
139 IDMT total information content on the distance magnitude Information indices
140 IVDE mean information content on the vertex degree equality Information indices
141 IVDM mean information content on the vertex degree magnitude Information indices
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No. Name Description Block

142 Ges Number of symmetry classes (based on electrotopological state) Information indices
143 rGes Relative number of symmetry classes (based on electrotopological state) Information indices
144 SOK Kier symmetry index Information indices
145 HVcepx graph vertex complexity index Information indices
146 HDcpx graph distance complexity index (log function) Information indices
147 Uindex Balaban U index Information indices
148 Vindex Balaban V index Information indices
149 Xindex Balaban X index Information indices
150 Yindex Balaban Y index Information indices
151 1CO Information Content index (neighborhood symmetry of 0-order) Information indices
152 IC1 Information Content index (neighborhood symmetry of 1-order) Information indices
153 1C2 Information Content index (neighborhood symmetry of 2-order) Information indices
154 IC3 Information Content index (neighborhood symmetry of 3-order) Information indices
155 1C4 Information Content index (neighborhood symmetry of 4-order) Information indices
156 1C5 Information Content index (neighborhood symmetry of 5-order) Information indices
157 TICO Total Information Content index (neighborhood symmetry of 0-order) Information indices
158 TIC1 Total Information Content index (neighborhood symmetry of 1-order) Information indices
159 TIC2 Total Information Content index (neighborhood symmetry of 2-order) Information indices
160 TIC3 Total Information Content index (neighborhood symmetry of 3-order) Information indices
161 TIC4 Total Information Content index (neighborhood symmetry of 4-order) Information indices
162 TICS Total Information Content index (neighborhood symmetry of 5-order) Information indices
163 SICO Structural Information Content index (neighborhood symmetry of 0-order) Information indices
164 SIC1 Structural Information Content index (neighborhood symmetry of 1-order) Information indices
165 SIC2 Structural Information Content index (neighborhood symmetry of 2-order) Information indices
166 SIC3 Structural Information Content index (neighborhood symmetry of 3-order) Information indices
167 SIC4 Structural Information Content index (neighborhood symmetry of 4-order) Information indices
168 SICS Structural Information Content index (neighborhood symmetry of 5-order) Information indices
169 CICO Complementary Information Content index (neighborhood symmetry of 0-order) Information indices
170 CIC1 Complementary Information Content index (neighborhood symmetry of 1-order) Information indices
171 CIC2 Complementary Information Content index (neighborhood symmetry of 2-order) Information indices
172 CIC3 Complementary Information Content index (neighborhood symmetry of 3-order) Information indices
173 CIC4 Complementary Information Content index (neighborhood symmetry of 4-order) Information indices
174 CICS Complementary Information Content index (neighborhood symmetry of 5-order) Information indices
175 BIC2 Bond Information Content index (neighborhood symmetry of 2-order) Information indices
176 BIC3 Bond Information Content index (neighborhood symmetry of 3-order) Information indices
177 BIC4 Bond Information Content index (neighborhood symmetry of 4-order) Information indices
178 BICS Bond Information Content index (neighborhood symmetry of 5-order) Information indices
179 ATS1m Broto-Moreau autocorrelation of lag 1 (log function) weighted by mass 2D autocorrelations
180 ATS2m Broto-Moreau autocorrelation of lag 2 (log function) weighted by mass 2D autocorrelations
181 ATS3m Broto-Moreau autocorrelation of lag 3 (log function) weighted by mass 2D autocorrelations
182 ATS4m Broto-Moreau autocorrelation of lag 4 (log function) weighted by mass 2D autocorrelations
183 ATS5m Broto-Moreau autocorrelation of lag 5 (log function) weighted by mass 2D autocorrelations
184 ATS6m Broto-Moreau autocorrelation of lag 6 (log function) weighted by mass 2D autocorrelations
185 ATS7m Broto-Moreau autocorrelation of lag 7 (log function) weighted by mass 2D autocorrelations
186 ATS8m Broto-Moreau autocorrelation of lag 8 (log function) weighted by mass 2D autocorrelations
187 ATS1v Broto-Moreau autocorrelation of lag 1 (log function) weighted by van der Waals volume 2D autocorrelations
188 ATS2v Broto-Moreau autocorrelation of lag 2 (log function) weighted by van der Waals volume 2D autocorrelations
189 ATS3v Broto-Moreau autocorrelation of lag 3 (log function) weighted by van der Waals volume 2D autocorrelations
190 ATS4v Broto-Moreau autocorrelation of lag 4 (log function) weighted by van der Waals volume 2D autocorrelations
191 ATS5v Broto-Moreau autocorrelation of lag 5 (log function) weighted by van der Waals volume 2D autocorrelations
192 ATS6v Broto-Moreau autocorrelation of lag 6 (log function) weighted by van der Waals volume 2D autocorrelations
193 ATS7v Broto-Moreau autocorrelation of lag 7 (log function) weighted by van der Waals volume 2D autocorrelations
194 ATS8v Broto-Moreau autocorrelation of lag 8 (log function) weighted by van der Waals volume 2D autocorrelations
195 ATSle Broto-Moreau autocorrelation of lag 1 (log function) weighted by Sanderson electronegativity 2D autocorrelations
196 ATS2e Broto-Moreau autocorrelation of lag 2 (log function) weighted by Sanderson electronegativity 2D autocorrelations
197 ATS3e Broto-Moreau autocorrelation of lag 3 (log function) weighted by Sanderson electronegativity 2D autocorrelations
198 ATS4e Broto-Moreau autocorrelation of lag 4 (log function) weighted by Sanderson electronegativity 2D autocorrelations
199 ATS5e Broto-Moreau autocorrelation of lag 5 (log function) weighted by Sanderson electronegativity 2D autocorrelations
200 ATS6e Broto-Moreau autocorrelation of lag 6 (log function) weighted by Sanderson electronegativity 2D autocorrelations
201 ATS7e Broto-Moreau autocorrelation of lag 7 (log function) weighted by Sanderson electronegativity 2D autocorrelations
202 ATS8e Broto-Moreau autocorrelation of lag 8 (log function) weighted by Sanderson electronegativity 2D autocorrelations
203 ATS1p Broto-Moreau autocorrelation of lag 1 (log function) weighted by polarizability 2D autocorrelations
204 ATS2p Broto-Moreau autocorrelation of lag 2 (log function) weighted by polarizability 2D autocorrelations
205 ATS3p Broto-Moreau autocorrelation of lag 3 (log function) weighted by polarizability 2D autocorrelations
206 ATS4p Broto-Moreau autocorrelation of lag 4 (log function) weighted by polarizability 2D autocorrelations
207 ATS5p Broto-Moreau autocorrelation of lag 5 (log function) weighted by polarizability 2D autocorrelations
208 ATS6p Broto-Moreau autocorrelation of lag 6 (log function) weighted by polarizability 2D autocorrelations
209 ATS7p Broto-Moreau autocorrelation of lag 7 (log function) weighted by polarizability 2D autocorrelations
210 ATS8p Broto-Moreau autocorrelation of lag 8 (log function) weighted by polarizability 2D autocorrelations
211 ATS1i Broto-Moreau autocorrelation of lag 1 (log function) weighted by ionization potential 2D autocorrelations
212 ATS2i Broto-Moreau autocorrelation of lag 2 (log function) weighted by ionization potential 2D autocorrelations
213 ATS3i Broto-Moreau autocorrelation of lag 3 (log function) weighted by ionization potential 2D autocorrelations

214 ATS4i Broto-Moreau autocorrelation of lag 4 (log function) weighted by ionization potential 2D autocorrelations
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No. Name Description Block

215 ATS5i Broto-Moreau autocorrelation of lag 5 (log function) weighted by ionization potential 2D autocorrelations
216 ATS6i Broto-Moreau autocorrelation of lag 6 (log function) weighted by ionization potential 2D autocorrelations
217 ATS7i Broto-Moreau autocorrelation of lag 7 (log function) weighted by ionization potential 2D autocorrelations
218 ATS8i Broto-Moreau autocorrelation of lag 8 (log function) weighted by ionization potential 2D autocorrelations
219 ATSClm Centred Broto-Moreau autocorrelation of lag 1 weighted by mass 2D autocorrelations
220 ATSC2m Centred Broto-Moreau autocorrelation of lag 2 weighted by mass 2D autocorrelations
221 ATSC3m Centred Broto-Moreau autocorrelation of lag 3 weighted by mass 2D autocorrelations
222 ATSC4m Centred Broto-Moreau autocorrelation of lag 4 weighted by mass 2D autocorrelations
223 ATSC5m Centred Broto-Moreau autocorrelation of lag 5 weighted by mass 2D autocorrelations
224 ATSC6m Centred Broto-Moreau autocorrelation of lag 6 weighted by mass 2D autocorrelations
225 ATSC7m Centred Broto-Moreau autocorrelation of lag 7 weighted by mass 2D autocorrelations
226 ATSC8m Centred Broto-Moreau autocorrelation of lag 8 weighted by mass 2D autocorrelations
227 ATSClv Centred Broto-Moreau autocorrelation of lag 1 weighted by van der Waals volume 2D autocorrelations
228 ATSC2v Centred Broto-Moreau autocorrelation of lag 2 weighted by van der Waals volume 2D autocorrelations
229 ATSC3v Centred Broto-Moreau autocorrelation of lag 3 weighted by van der Waals volume 2D autocorrelations
230 ATSC4v Centred Broto-Moreau autocorrelation of lag 4 weighted by van der Waals volume 2D autocorrelations
231 ATSCS5v Centred Broto-Moreau autocorrelation of lag 5 weighted by van der Waals volume 2D autocorrelations
232 ATSCo6v Centred Broto-Moreau autocorrelation of lag 6 weighted by van der Waals volume 2D autocorrelations
233 ATSC7v Centred Broto-Moreau autocorrelation of lag 7 weighted by van der Waals volume 2D autocorrelations
234 ATSC8v Centred Broto-Moreau autocorrelation of lag 8 weighted by van der Waals volume 2D autocorrelations
235 ATSCle Centred Broto-Moreau autocorrelation of lag 1 weighted by Sanderson electronegativity 2D autocorrelations
236 ATSC2e Centred Broto-Moreau autocorrelation of lag 2 weighted by Sanderson electronegativity 2D autocorrelations
237 ATSC3e Centred Broto-Moreau autocorrelation of lag 3 weighted by Sanderson electronegativity 2D autocorrelations
238 ATSC4e Centred Broto-Moreau autocorrelation of lag 4 weighted by Sanderson electronegativity 2D autocorrelations
239 ATSCSe Centred Broto-Moreau autocorrelation of lag 5 weighted by Sanderson electronegativity 2D autocorrelations
240 ATSC6e Centred Broto-Moreau autocorrelation of lag 6 weighted by Sanderson electronegativity 2D autocorrelations
241 ATSCT7e Centred Broto-Moreau autocorrelation of lag 7 weighted by Sanderson electronegativity 2D autocorrelations
242 ATSC8e Centred Broto-Moreau autocorrelation of lag 8 weighted by Sanderson electronegativity 2D autocorrelations
243 ATSClp Centred Broto-Moreau autocorrelation of lag 1 weighted by polarizability 2D autocorrelations
244 ATSC2p Centred Broto-Moreau autocorrelation of lag 2 weighted by polarizability 2D autocorrelations
245 ATSC3p Centred Broto-Moreau autocorrelation of lag 3 weighted by polarizability 2D autocorrelations
246 ATSC4p Centred Broto-Moreau autocorrelation of lag 4 weighted by polarizability 2D autocorrelations
247 ATSCS5p Centred Broto-Moreau autocorrelation of lag 5 weighted by polarizability 2D autocorrelations
248 ATSC6p Centred Broto-Moreau autocorrelation of lag 6 weighted by polarizability 2D autocorrelations
249 ATSC7p Centred Broto-Moreau autocorrelation of lag 7 weighted by polarizability 2D autocorrelations
250 ATSC8p Centred Broto-Moreau autocorrelation of lag 8 weighted by polarizability 2D autocorrelations
251 ATSCli Centred Broto-Moreau autocorrelation of lag 1 weighted by ionization potential 2D autocorrelations
252 ATSC2i Centred Broto-Moreau autocorrelation of lag 2 weighted by ionization potential 2D autocorrelations
253 ATSC3i Centred Broto-Moreau autocorrelation of lag 3 weighted by ionization potential 2D autocorrelations
254 ATSC4i Centred Broto-Moreau autocorrelation of lag 4 weighted by ionization potential 2D autocorrelations
255 ATSCSi Centred Broto-Moreau autocorrelation of lag 5 weighted by ionization potential 2D autocorrelations
256 ATSC6i Centred Broto-Moreau autocorrelation of lag 6 weighted by ionization potential 2D autocorrelations
257 ATSCT7i Centred Broto-Moreau autocorrelation of lag 7 weighted by ionization potential 2D autocorrelations
258 ATSCS8i Centred Broto-Moreau autocorrelation of lag 8 weighted by ionization potential 2D autocorrelations
259 MATS1m Moran autocorrelation of lag 1 weighted by mass 2D autocorrelations
260 MATS2m Moran autocorrelation of lag 2 weighted by mass 2D autocorrelations
261 MATS3m Moran autocorrelation of lag 3 weighted by mass 2D autocorrelations
262 MATS4m Moran autocorrelation of lag 4 weighted by mass 2D autocorrelations
263 MATS5m Moran autocorrelation of lag 5 weighted by mass 2D autocorrelations
264 MATS6m Moran autocorrelation of lag 6 weighted by mass 2D autocorrelations
265 MATS7m Moran autocorrelation of lag 7 weighted by mass 2D autocorrelations
266 MATS8m Moran autocorrelation of lag 8 weighted by mass 2D autocorrelations
267 MATS1v Moran autocorrelation of lag 1 weighted by van der Waals volume 2D autocorrelations
268 MATS2v Moran autocorrelation of lag 2 weighted by van der Waals volume 2D autocorrelations
269 MATS3v Moran autocorrelation of lag 3 weighted by van der Waals volume 2D autocorrelations
270 MATS4v Moran autocorrelation of lag 4 weighted by van der Waals volume 2D autocorrelations
271 MATS5v Moran autocorrelation of lag 5 weighted by van der Waals volume 2D autocorrelations
272 MATS6v Moran autocorrelation of lag 6 weighted by van der Waals volume 2D autocorrelations
273 MATS7v Moran autocorrelation of lag 7 weighted by van der Waals volume 2D autocorrelations
274 MATS8v Moran autocorrelation of lag 8 weighted by van der Waals volume 2D autocorrelations
275 MATSle Moran autocorrelation of lag 1 weighted by Sanderson electronegativity 2D autocorrelations
276 MATS2e Moran autocorrelation of lag 2 weighted by Sanderson electronegativity 2D autocorrelations
277 MATS3e Moran autocorrelation of lag 3 weighted by Sanderson electronegativity 2D autocorrelations
278 MATS4e Moran autocorrelation of lag 4 weighted by Sanderson electronegativity 2D autocorrelations
279 MATSS5e Moran autocorrelation of lag 5 weighted by Sanderson electronegativity 2D autocorrelations
280 MATS6e Moran autocorrelation of lag 6 weighted by Sanderson electronegativity 2D autocorrelations
281 MATS7e Moran autocorrelation of lag 7 weighted by Sanderson electronegativity 2D autocorrelations
282 MATS8e Moran autocorrelation of lag 8 weighted by Sanderson electronegativity 2D autocorrelations
283 MATS1p Moran autocorrelation of lag 1 weighted by polarizability 2D autocorrelations
284 MATS2p Moran autocorrelation of lag 2 weighted by polarizability 2D autocorrelations
285 MATS3p Moran autocorrelation of lag 3 weighted by polarizability 2D autocorrelations
286 MATS4p Moran autocorrelation of lag 4 weighted by polarizability 2D autocorrelations
287 MATS5p Moran autocorrelation of lag 5 weighted by polarizability 2D autocorrelations
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288 MATS6p Moran autocorrelation of lag 6 weighted by polarizability 2D autocorrelations
289 MATS7p Moran autocorrelation of lag 7 weighted by polarizability 2D autocorrelations
290 MATS8p Moran autocorrelation of lag 8 weighted by polarizability 2D autocorrelations
291 MATS1i Moran autocorrelation of lag 1 weighted by ionization potential 2D autocorrelations
292 MATS2i Moran autocorrelation of lag 2 weighted by ionization potential 2D autocorrelations
293 MATS3i Moran autocorrelation of lag 3 weighted by ionization potential 2D autocorrelations
294 MATS4i Moran autocorrelation of lag 4 weighted by ionization potential 2D autocorrelations
295 MATS5i Moran autocorrelation of lag 5 weighted by ionization potential 2D autocorrelations
296 MATS6i Moran autocorrelation of lag 6 weighted by ionization potential 2D autocorrelations
297 MATS7i Moran autocorrelation of lag 7 weighted by ionization potential 2D autocorrelations
298 MATSS8i Moran autocorrelation of lag 8 weighted by ionization potential 2D autocorrelations
299 GATSIm Geary autocorrelation of lag 1 weighted by mass 2D autocorrelations
300 GATS2m Geary autocorrelation of lag 2 weighted by mass 2D autocorrelations
301 GATS3m Geary autocorrelation of lag 3 weighted by mass 2D autocorrelations
302 GATS4m Geary autocorrelation of lag 4 weighted by mass 2D autocorrelations
303 GATS5m Geary autocorrelation of lag 5 weighted by mass 2D autocorrelations
304 GATS6m Geary autocorrelation of lag 6 weighted by mass 2D autocorrelations
305 GATS7m Geary autocorrelation of lag 7 weighted by mass 2D autocorrelations
306 GATS8m Geary autocorrelation of lag 8 weighted by mass 2D autocorrelations
307 GATS1v Geary autocorrelation of lag 1 weighted by van der Waals volume 2D autocorrelations
308 GATS2v Geary autocorrelation of lag 2 weighted by van der Waals volume 2D autocorrelations
309 GATS3v Geary autocorrelation of lag 3 weighted by van der Waals volume 2D autocorrelations
310 GATS4v Geary autocorrelation of lag 4 weighted by van der Waals volume 2D autocorrelations
311 GATS5v Geary autocorrelation of lag 5 weighted by van der Waals volume 2D autocorrelations
312 GATS6v Geary autocorrelation of lag 6 weighted by van der Waals volume 2D autocorrelations
313 GATS7v Geary autocorrelation of lag 7 weighted by van der Waals volume 2D autocorrelations
314 GATS8v Geary autocorrelation of lag 8 weighted by van der Waals volume 2D autocorrelations
315 GATSle Geary autocorrelation of lag 1 weighted by Sanderson electronegativity 2D autocorrelations
316 GATS2e Geary autocorrelation of lag 2 weighted by Sanderson electronegativity 2D autocorrelations
317 GATS3e Geary autocorrelation of lag 3 weighted by Sanderson electronegativity 2D autocorrelations
318 GATS4e Geary autocorrelation of lag 4 weighted by Sanderson electronegativity 2D autocorrelations
319 GATS5e Geary autocorrelation of lag 5 weighted by Sanderson electronegativity 2D autocorrelations
320 GATS6e Geary autocorrelation of lag 6 weighted by Sanderson electronegativity 2D autocorrelations
321 GATS7e Geary autocorrelation of lag 7 weighted by Sanderson electronegativity 2D autocorrelations
322 GATS8e Geary autocorrelation of lag 8 weighted by Sanderson electronegativity 2D autocorrelations
323 GATSI1p Geary autocorrelation of lag 1 weighted by polarizability 2D autocorrelations
324 GATS2p Geary autocorrelation of lag 2 weighted by polarizability 2D autocorrelations
325 GATS3p Geary autocorrelation of lag 3 weighted by polarizability 2D autocorrelations
326 GATS4p Geary autocorrelation of lag 4 weighted by polarizability 2D autocorrelations
327 GATS5p Geary autocorrelation of lag 5 weighted by polarizability 2D autocorrelations
328 GATS6p Geary autocorrelation of lag 6 weighted by polarizability 2D autocorrelations
329 GATS7p Geary autocorrelation of lag 7 weighted by polarizability 2D autocorrelations
330 GATS8p Geary autocorrelation of lag 8 weighted by polarizability 2D autocorrelations
331 GATS1i Geary autocorrelation of lag 1 weighted by ionization potential 2D autocorrelations
332 GATS2i Geary autocorrelation of lag 2 weighted by ionization potential 2D autocorrelations
333 GATS3i Geary autocorrelation of lag 3 weighted by ionization potential 2D autocorrelations
334 GATS4i Geary autocorrelation of lag 4 weighted by ionization potential 2D autocorrelations
335 GATS5i Geary autocorrelation of lag 5 weighted by ionization potential 2D autocorrelations
336 GATS6i Geary autocorrelation of lag 6 weighted by ionization potential 2D autocorrelations
337 GATS7i Geary autocorrelation of lag 7 weighted by ionization potential 2D autocorrelations
338 GATSSi Geary autocorrelation of lag 8 weighted by ionization potential 2D autocorrelations
339 GGI1 topological charge index of order 1 2D autocorrelations
340 GGI2 topological charge index of order 2 2D autocorrelations
341 GGI3 topological charge index of order 3 2D autocorrelations
342 GGI4 topological charge index of order 4 2D autocorrelations
343 GGI5 topological charge index of order 5 2D autocorrelations
344 GGI6 topological charge index of order 6 2D autocorrelations
345 GGI7 topological charge index of order 7 2D autocorrelations
346 GGI8 topological charge index of order 8 2D autocorrelations
347 GGI9 topological charge index of order 9 2D autocorrelations
348 GGI10 topological charge index of order 10 2D autocorrelations
349 JGI1 mean topological charge index of order 1 2D autocorrelations
350 JGI2 mean topological charge index of order 2 2D autocorrelations
351 JGI3 mean topological charge index of order 3 2D autocorrelations
352 JGI4 mean topological charge index of order 4 2D autocorrelations
353 JGI5 mean topological charge index of order 5 2D autocorrelations
354 JGI6 mean topological charge index of order 6 2D autocorrelations
355 JGI7 mean topological charge index of order 7 2D autocorrelations
356 JGI8 mean topological charge index of order 8 2D autocorrelations
357 JGI9 mean topological charge index of order 9 2D autocorrelations
358 JGI10 mean topological charge index of order 10 2D autocorrelations
359 JGT global topological charge index 2D autocorrelations
360 SpMax1_Bh(m) largest eigenvalue n. 1 of Burden matrix weighted by mass Burden eigenvalues
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361
362
363
364
365
366
367
368
369
370
371

372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411

412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433

SpMax2_Bh(m)
SpMax3_Bh(m)
SpMax4_Bh(m)
SpMax5_Bh(m)
SpMax6_Bh(m)
SpMax7_Bh(m)
SpMax8_Bh(m)
SpMax1_Bh(v)
SpMax2_Bh(v)
SpMax3_Bh(v)
SpMax4_Bh(v)
SpMax5_Bh(v)
SpMax6_Bh(v)
SpMax7_Bh(v)
SpMax8_Bh(v)
SpMax1_Bh(e)
SpMax2_Bh(e)
SpMax3_Bh(e)
SpMax4_Bh(e)
SpMax5_Bh(e)
SpMax6_Bh(e)
SpMax7_Bh(e)
SpMax8_Bh(e)
SpMax1_Bh(p)
SpMax2_Bh(p)
SpMax3_Bh(p)
SpMax4_Bh(p)
SpMax5_Bh(p)
SpMax6_Bh(p)
SpMax7_Bh(p)
SpMax8_Bh(p)
SpMax1_Bh(i)
SpMax2_Bh(i)
SpMax3_Bh(i)
SpMax4_Bh(i)
SpMax5_Bh(i)
SpMax6_Bh(i)
SpMax7_Bh(i)
SpMax8_Bh(i)
SpMin1_Bh(m)
SpMin2_Bh(m)
SpMin3_Bh(m)
SpMin4_Bh(m)
SpMin5_Bh(m)
SpMin6_Bh(m)
SpMin7_Bh(m)
SpMin8_Bh(m)
SpMin1_Bh(v)
SpMin2_Bh(v)
SpMin3_Bh(v)
SpMin4_Bh(v)
SpMin5_Bh(v)
SpMin6_Bh(v)
SpMin7_Bh(v)
SpMin8_Bh(v)
SpMin1_Bh(e)
SpMin2_Bh(e)
SpMin3_Bh(e)
SpMin4_Bh(e)
SpMin5_Bh(e)
SpMin6_Bh(e)
SpMin7_Bh(e)
SpMin8_Bh(e)
SpMin1_Bh(p)
SpMin2_Bh(p)
SpMin3_Bh(p)
SpMin4_Bh(p)
SpMin5_Bh(p)
SpMin6_Bh(p)
SpMin7_Bh(p)
SpMin8_Bh(p)
SpMin1_Bh(i)
SpMin2_Bh(i)

largest eigenvalue n.
largest eigenvalue n.
largest eigenvalue n.
largest eigenvalue n.
largest eigenvalue n.
largest eigenvalue n.
largest eigenvalue n.
largest eigenvalue n.
largest eigenvalue n.
largest eigenvalue n.
largest eigenvalue n.
largest eigenvalue n.
largest eigenvalue n.
largest eigenvalue n.
largest eigenvalue n.
largest eigenvalue n.
largest eigenvalue n.
largest eigenvalue n.
largest eigenvalue n.
largest eigenvalue n.
largest eigenvalue n.
largest eigenvalue n.
largest eigenvalue n.
largest eigenvalue n.
largest eigenvalue n.
largest eigenvalue n.
largest eigenvalue n.
largest eigenvalue n.
largest eigenvalue n.
largest eigenvalue n.
largest eigenvalue n.
largest eigenvalue n.
largest eigenvalue n.
largest eigenvalue n.
largest eigenvalue n.
largest eigenvalue n.
largest eigenvalue n.
largest eigenvalue n.
largest eigenvalue n.

2 of Burden matrix weighted by mass

3 of Burden matrix weighted by mass

4 of Burden matrix weighted by mass

5 of Burden matrix weighted by mass

6 of Burden matrix weighted by mass

7 of Burden matrix weighted by mass

8 of Burden matrix weighted by mass

1 of Burden matrix weighted by van der Waals volume

2 of Burden matrix weighted by van der Waals volume

3 of Burden matrix weighted by van der Waals volume

4 of Burden matrix weighted by van der Waals volume

5 of Burden matrix weighted by van der Waals volume

6 of Burden matrix weighted by van der Waals volume

7 of Burden matrix weighted by van der Waals volume

8 of Burden matrix weighted by van der Waals volume

1 of Burden matrix weighted by Sanderson electronegativity
2 of Burden matrix weighted by Sanderson electronegativity
3 of Burden matrix weighted by Sanderson electronegativity
4 of Burden matrix weighted by Sanderson electronegativity
5 of Burden matrix weighted by Sanderson electronegativity
6 of Burden matrix weighted by Sanderson electronegativity
7 of Burden matrix weighted by Sanderson electronegativity
8 of Burden matrix weighted by Sanderson electronegativity
1 of Burden matrix weighted by polarizability

2 of Burden matrix weighted by polarizability

3 of Burden matrix weighted by polarizability

4 of Burden matrix weighted by polarizability

5 of Burden matrix weighted by polarizability

6 of Burden matrix weighted by polarizability

7 of Burden matrix weighted by polarizability

8 of Burden matrix weighted by polarizability

1 of Burden matrix weighted by ionization potential

2 of Burden matrix weighted by ionization potential

3 of Burden matrix weighted by ionization potential

4 of Burden matrix weighted by ionization potential

5 of Burden matrix weighted by ionization potential

6 of Burden matrix weighted by ionization potential

7 of Burden matrix weighted by ionization potential

8 of Burden matrix weighted by ionization potential

smallest eigenvalue n. 1 of Burden matrix weighted by mass
smallest eigenvalue n. 2 of Burden matrix weighted by mass
smallest eigenvalue n. 3 of Burden matrix weighted by mass

smallest eigenvalue n. 4 of Burden matrix weighted by mass

smallest eigenvalue n. 5 of Burden matrix weighted by mass
smallest eigenvalue n. 6 of Burden matrix weighted by mass
smallest eigenvalue n. 7 of Burden matrix weighted by mass
smallest eigenvalue n. 8 of Burden matrix weighted by mass
smallest eigenvalue n. 1 of Burden matrix weighted by van der Waals volume
smallest eigenvalue n. 2 of Burden matrix weighted by van der Waals volume

smallest eigenvalue n. 3 of Burden matrix weighted by van der Waals volume

smallest eigenvalue n. 4 of Burden matrix weighted by van der Waals volume

smallest eigenvalue n. 5 of Burden matrix weighted by van der Waals volume
smallest eigenvalue n. 6 of Burden matrix weighted by van der Waals volume
smallest eigenvalue n. 7 of Burden matrix weighted by van der Waals volume
smallest eigenvalue n. 8 of Burden matrix weighted by van der Waals volume
smallest eigenvalue n. 1 of Burden matrix weighted by Sanderson electronegativity
smallest eigenvalue n. 2 of Burden matrix weighted by Sanderson electronegativity

smallest eigenvalue n. 3 of Burden matrix weighted by Sanderson electronegativity

smallest eigenvalue n. 4 of Burden matrix weighted by Sanderson electronegativity
smallest eigenvalue n. 5 of Burden matrix weighted by Sanderson electronegativity
smallest eigenvalue n. 6 of Burden matrix weighted by Sanderson electronegativity
smallest eigenvalue n. 7 of Burden matrix weighted by Sanderson electronegativity
smallest eigenvalue n. 8 of Burden matrix weighted by Sanderson electronegativity
smallest eigenvalue n. 1 of Burden matrix weighted by polarizability

smallest eigenvalue n. 2 of Burden matrix weighted by polarizability

smallest eigenvalue n. 3 of Burden matrix weighted by polarizability

smallest eigenvalue n. 4 of Burden matrix weighted by polarizability
smallest eigenvalue n. 5 of Burden matrix weighted by polarizability
smallest eigenvalue n. 6 of Burden matrix weighted by polarizability
smallest eigenvalue n. 7 of Burden matrix weighted by polarizability
smallest eigenvalue n. 8 of Burden matrix weighted by polarizability
smallest eigenvalue n. 1 of Burden matrix weighted by ionization potential

smallest eigenvalue n. 2 of Burden matrix weighted by ionization potential

Burden eigenvalues
Burden eigenvalues
Burden eigenvalues
Burden eigenvalues
Burden eigenvalues
Burden eigenvalues
Burden eigenvalues
Burden eigenvalues
Burden eigenvalues
Burden eigenvalues
Burden eigenvalues
Burden eigenvalues
Burden eigenvalues
Burden eigenvalues
Burden eigenvalues
Burden eigenvalues
Burden eigenvalues
Burden eigenvalues
Burden eigenvalues
Burden eigenvalues
Burden eigenvalues
Burden eigenvalues
Burden eigenvalues
Burden eigenvalues
Burden eigenvalues
Burden eigenvalues
Burden eigenvalues
Burden eigenvalues
Burden eigenvalues
Burden eigenvalues
Burden eigenvalues
Burden eigenvalues
Burden eigenvalues
Burden eigenvalues
Burden eigenvalues
Burden eigenvalues
Burden eigenvalues
Burden eigenvalues
Burden eigenvalues
Burden eigenvalues
Burden eigenvalues
Burden eigenvalues
Burden eigenvalues
Burden eigenvalues
Burden eigenvalues
Burden eigenvalues
Burden eigenvalues
Burden eigenvalues
Burden eigenvalues
Burden eigenvalues
Burden eigenvalues
Burden eigenvalues
Burden eigenvalues
Burden eigenvalues
Burden eigenvalues
Burden eigenvalues
Burden eigenvalues
Burden eigenvalues
Burden eigenvalues
Burden eigenvalues
Burden eigenvalues
Burden eigenvalues
Burden eigenvalues
Burden eigenvalues
Burden eigenvalues
Burden eigenvalues
Burden eigenvalues
Burden eigenvalues
Burden eigenvalues
Burden eigenvalues
Burden eigenvalues
Burden eigenvalues
Burden eigenvalues
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434 SpMin3_Bh(i) smallest eigenvalue n. 3 of Burden matrix weighted by ionization potential Burden eigenvalues

435 SpMin4_Bh(i) smallest eigenvalue n. 4 of Burden matrix weighted by ionization potential Burden eigenvalues

436 SpMin5_Bh(i) smallest eigenvalue n. 5 of Burden matrix weighted by ionization potential Burden eigenvalues

437 SpMin6_Bh(i) smallest eigenvalue n. 6 of Burden matrix weighted by ionization potential Burden eigenvalues

438 SpMin7_Bh(i) smallest eigenvalue n. 7 of Burden matrix weighted by ionization potential Burden eigenvalues

439 SpMin8_Bh(i) smallest eigenvalue n. 8 of Burden matrix weighted by ionization potential Burden eigenvalues

440 P_VSA_LogP_1 P_VSA-like on LogP, bin 1 P_VSA-like descriptors
441 P_VSA_LogP_2 P_VSA-like on LogP, bin 2 P_VSA-like descriptors
442 P_VSA_LogP_3 P_VSA-like on LogP, bin 3 P_VSA-like descriptors
443 P_VSA_LogP_4 P_VSA-like on LogP, bin 4 P_VSA-like descriptors
444 P_VSA_LogP_5 P_VSA-like on LogP, bin 5 P_VSA-like descriptors
445 P_VSA_LogP_6 P_VSA-like on LogP, bin 6 P_VSA-like descriptors
446 P_VSA_LogP_7 P_VSA-like on LogP, bin 7 P_VSA-like descriptors
447 P_VSA_LogP_8 P_VSA-like on LogP, bin 8 P_VSA-like descriptors
448 P_VSA_MR_1 P_VSA-like on Molar Refractivity, bin 1 P_VSA-like descriptors
449 P_VSA_MR_2 P_VSA-like on Molar Refractivity, bin 2 P_VSA-like descriptors
450 P_VSA_MR_3 P_VSA-like on Molar Refractivity, bin 3 P_VSA-like descriptors
451 P_VSA_MR_4 P_VSA-like on Molar Refractivity, bin 4 P_VSA-like descriptors
452 P_VSA_MR_5 P_VSA-like on Molar Refractivity, bin 5 P_VSA-like descriptors
453 P_VSA_MR_6 P_VSA-like on Molar Refractivity, bin 6 P_VSA-like descriptors
454 P_VSA_MR_7 P_VSA-like on Molar Refractivity, bin 7 P_VSA-like descriptors
455 P_VSA_MR_8 P_VSA-like on Molar Refractivity, bin 8 P_VSA-like descriptors
456 P_VSA_m_1 P_VSA-like on mass, bin 1 P_VSA-like descriptors
457 P_VSA_m_2 P_VSA-like on mass, bin 2 P_VSA-like descriptors
458 P_VSA_m_3 P_VSA-like on mass, bin 3 P_VSA-like descriptors
459 P_VSA_m_4 P_VSA-like on mass, bin 4 P_VSA-like descriptors
460 P_VSA_v_1 P_VSA-like on van der Waals volume, bin 1 P_VSA-like descriptors
461 P_VSA_v_2 P_VSA-like on van der Waals volume, bin 2 P_VSA-like descriptors
462 P_VSA_v_3 P_VSA-like on van der Waals volume, bin 3 P_VSA-like descriptors
463 P_VSA_e_1 P_VSA-like on Sanderson electronegativity, bin 1 P_VSA-like descriptors
464 P_VSA_e 2 P_VSA-like on Sanderson electronegativity, bin 2 P_VSA-like descriptors
465 P_VSA_e 3 P_VSA-like on Sanderson electronegativity, bin 3 P_VSA-like descriptors
466 P_VSA_e_ 4 P_VSA-like on Sanderson electronegativity, bin 4 P_VSA-like descriptors
467 P_VSA_e_5 P_VSA-like on Sanderson electronegativity, bin 5 P_VSA-like descriptors
468 P_VSA_p_1 P_VSA-like on polarizability, bin 1 P_VSA-like descriptors
469 P_VSA_p_2 P_VSA-like on polarizability, bin 2 P_VSA-like descriptors
470 P_VSA_p_3 P_VSA-like on polarizability, bin 3 P_VSA-like descriptors
471 P_VSA_p_4 P_VSA-like on polarizability, bin 4 P_VSA-like descriptors
472 P_VSA_i_1 P_VSA-like on ionization potential, bin 1 P_VSA-like descriptors
473 P_VSA_i 2 P_VSA-like on ionization potential, bin 2 P_VSA-like descriptors
474 P_VSA_i_ 3 P_VSA-like on ionization potential, bin 3 P_VSA-like descriptors
475 P_VSA_i_4 P_VSA-like on ionization potential, bin 4 P_VSA-like descriptors
476 P_VSA_s_1 P_VSA-like on I-state, bin 1 P_VSA-like descriptors
477 P_VSA_s 2 P_VSA-like on I-state, bin 2 P_VSA-like descriptors
478 P_VSA_s 3 P_VSA-like on I-state, bin 3 P_VSA-like descriptors
479 P_VSA_s_4 P_VSA-like on I-state, bin 4 P_VSA-like descriptors
480 P_VSA_s_5 P_VSA-like on I-state, bin 5 P_VSA-like descriptors
481 P_VSA_s_6 P_VSA-like on I-state, bin 6 P_VSA-like descriptors
482 P_VSA_ppp_L P_VSA-like on potential pharmacophore points, L - lipophilic P_VSA-like descriptors
483 P_VSA_ppp_P P_VSA-like on potential pharmacophore points, P - positive P_VSA-like descriptors
484 P_VSA_ppp_N P_VSA-like on potential pharmacophore points, N - negative P_VSA-like descriptors
485 P_VSA_ppp_D P_VSA-like on potential pharmacophore points, D - hydrogen-bond donor P_VSA-like descriptors
486 P_VSA_ppp_A P_VSA-like on potential pharmacophore points, A - hydrogen-bond acceptor P_VSA-like descriptors
487 P_VSA_ppp_ar P_VSA-like on potential pharmacophore points, ar - aromatic atoms P_VSA-like descriptors
488 P_VSA_ppp_con P_VSA-like on potential pharmacophore points, con - conjugated atoms P_VSA-like descriptors
489 P_VSA_ppp_hal P_VSA-like on potential pharmacophore points, hal - halogen atoms P_VSA-like descriptors
490 P_VSA_ppp_cyc P_VSA-like on potential pharmacophore points, cyc - atoms belonging to cycles P_VSA-like descriptors
491 P_VSA_ppp_ter P_VSA-like on potential pharmacophore points, ter - terminal atoms P_VSA-like descriptors
492 nCp number of terminal primary C(sp3) Functional group counts
493 nCs number of total secondary C(sp3) Functional group counts
494 nCt number of total tertiary C(sp3) Functional group counts
495 nCq number of total quaternary C(sp3) Functional group counts
496 nCrs number of ring secondary C(sp3) Functional group counts
497 nCrt number of ring tertiary C(sp3) Functional group counts
498 nCrq number of ring quaternary C(sp3) Functional group counts
499 nCar number of aromatic C(sp2) Functional group counts
500 nCbH number of unsubstituted benzene C(sp2) Functional group counts
501 nCb- number of substituted benzene C(sp2) Functional group counts
502 nCconj number of non-aromatic conjugated C(sp2) Functional group counts
503 nR=Cp number of terminal primary C(sp2) Functional group counts
504 nR=Cs number of aliphatic secondary C(sp2) Functional group counts
505 nR=Ct number of aliphatic tertiary C(sp2) Functional group counts
506 nR
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507 nRNCS number of isothiocyanates (aliphatic) Functional group counts
508 nRCOOH number of carboxylic acids (aliphatic) Functional group counts
509 nArCOOH number of carboxylic acids (aromatic) Functional group counts
510 nRCOOR number of esters (aliphatic) Functional group counts
511 nArCOOR number of esters (aromatic) Functional group counts
512 nRCONH2 number of primary amides (aliphatic) Functional group counts
513 nRCONHR number of secondary amides (aliphatic) Functional group counts
514 nRCONR2 number of tertiary amides (aliphatic) Functional group counts
515 nRCSOH number of thioacids (aliphatic) Functional group counts
516 nRCOSR number of thioesters (aliphatic) Functional group counts
517 nArCOSR number of thioesters (aromatic) Functional group counts
518 nRCHO number of aldehydes (aliphatic) Functional group counts
519 nArCHO number of aldehydes (aromatic) Functional group counts
520 nRCO number of ketones (aliphatic) Functional group counts
521 nArCO number of ketones (aromatic) Functional group counts
522 nCONN number of urea (-thio) derivatives Functional group counts
523 nC(=N)N2 number of guanidine derivatives Functional group counts
524 nRC=N number of imines (aliphatic) Functional group counts
525 nRNH2 number of primary amines (aliphatic) Functional group counts
526 nArNH2 number of primary amines (aromatic) Functional group counts
527 nRNHR number of secondary amines (aliphatic) Functional group counts
528 nArNHR number of secondary amines (aromatic) Functional group counts
529 nRNR2 number of tertiary amines (aliphatic) Functional group counts
530 nN+ number of positively charged N Functional group counts
531 nArNO2 number of nitro groups (aromatic) Functional group counts
532 nN(CO)2 number of imides (-thio) Functional group counts
533 nROH number of hydroxyl groups Functional group counts
534 nArOH number of aromatic hydroxyls Functional group counts
535 nOHp number of primary alcohols Functional group counts
536 nOHs number of secondary alcohols Functional group counts
537 nOHt number of tertiary alcohols Functional group counts
538 nROR number of ethers (aliphatic) Functional group counts
539 nArOR number of ethers (aromatic) Functional group counts
540 nO(C=0)2 number of anhydrides (-thio) Functional group counts
541 nH20 number of water molecules Functional group counts
542 nSH number of thiols Functional group counts
543 nRSR number of sulfides Functional group counts
544 nRSSR number of disulfides Functional group counts
545 nSO number of sulfoxides Functional group counts
546 nSO20H number of sulfonic (thio-/dithio-) acids Functional group counts
547 nPO4 number of phosphates/thiophosphates Functional group counts
548 nOxiranes number of Oxiranes Functional group counts
549 nPyrrolidines number of Pyrrolidines Functional group counts
550 nOxolanes number of Oxolanes Functional group counts
551 nPyrroles number of Pyrroles Functional group counts
552 nlmidazoles number of Imidazoles Functional group counts
553 nFuranes number of Furanes Functional group counts
554 nThiophenes number of Thiophenes Functional group counts
555 nOxazoles number of Oxazoles Functional group counts
556 nThiazoles number of Thiazoles Functional group counts
557 nPyridines number of Pyridines Functional group counts
558 nPyrimidines number of Pyrimidines Functional group counts
559 nPyrazines number of Pyrazines Functional group counts
560 nHDon number of donor atoms for H-bonds (N and O) Functional group counts
561 nHAcc number of acceptor atoms for H-bonds (N,O,F) Functional group counts
562 C-001 CH3R / CH4 Atom-centred fragments
563 C-002 CH2R2 Atom-centred fragments
564 C-003 CHR3 Atom-centred fragments
565 C-004 CR4 Atom-centred fragments
566 C-005 CH3X Atom-centred fragments
567 C-006 CH2RX Atom-centred fragments
568 C-007 CH2X2 Atom-centred fragments
569 C-008 CHR2X Atom-centred fragments
570 C-009 CHRX2 Atom-centred fragments
571 C-010 CHX3 Atom-centred fragments
572 C-011 CR3X Atom-centred fragments
573 C-012 CR2X2 Atom-centred fragments
574 C-015 =CH2 Atom-centred fragments
575 C-016 =CHR Atom-centred fragments
576 C-017 =CR2 Atom-centred fragments
577 C-018 =CHX Atom-centred fragments
578 C-019 =CRX Atom-centred fragments
579 C-022
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580 C-024 R-CH-R Atom-centred fragments
581 C-025 R-CR-R Atom-centred fragments
582 C-026 R-CX-R Atom-centred fragments
583 C-027 R-CH-X Atom-centred fragments
584 C-028 R-CR-X Atom-centred fragments
585 C-029 R-CX-X Atom-centred fragments
586 C-031 X-CR-X Atom-centred fragments
587 C-033 R-CH..X Atom-centred fragments
588 C-034 R-CR.X Atom-centred fragments
589 C-035 R-CX.X Atom-centred fragments
590 C-036 Al-CH=X Atom-centred fragments
591 C-037 Ar-CH=X Atom-centred fragments
592 C-038 Al-C(=X)-Al Atom-centred fragments
593 C-039 Ar-C(=X)-R Atom-centred fragments
594 C-040 R-C(=X)-X /R-C

595 C-041 X-C(=X)-X Atom-centred fragments
596 C-042 X-CH.X Atom-centred fragments
597 C-043 X-CR.X Atom-centred fragments
598 C-044 X-CX.X Atom-centred fragments
599 H-046 H attached to CO(sp3) no X attached to next C Atom-centred fragments
600 H-047 H attached to C1(sp3)/C0O(sp2) Atom-centred fragments
601 H-048 H attached to C2(sp3)/C1(sp2)/CO(sp) Atom-centred fragments
602 H-049 H attached to C3(sp3)/C2(sp2)/C3(sp2)/C3(sp) Atom-centred fragments
603 H-050 H attached to heteroatom Atom-centred fragments
604 H-051 H attached to alpha-C Atom-centred fragments
605 H-052 H attached to CO(sp3) with 1X attached to next C Atom-centred fragments
606 H-053 H attached to CO(sp3) with 2X attached to next C Atom-centred fragments
607 H-054 H attached to CO(sp3) with 3X attached to next C Atom-centred fragments
608 0-056 alcohol Atom-centred fragments
609 0-057 phenol / enol / carboxyl OH Atom-centred fragments
610 0-058 #NAME? Atom-centred fragments
611 0-059 Al-O-Al Atom-centred fragments
612 0-060 Al-O-Ar / Ar-O-Ar /R..0..R /R-O-C=X Atom-centred fragments
613 0-061 O- Atom-centred fragments
614 0-062 O- (negatively charged) Atom-centred fragments
615 N-066 Al-NH2 Atom-centred fragments
616 N-067 AI2-NH Atom-centred fragments
617 N-068 Al3-N Atom-centred fragments
618 N-069 Ar-NH2 / X-NH2 Atom-centred fragments
619 N-070 Ar-NH-Al Atom-centred fragments
620 N-072 RCO-N</ >N-X=X Atom-centred fragments
621 N-073 Ar2NH / Ar3N / Ar2N-Al/R.N..R Atom-centred fragments
622 N-074 R

623 N-075 R-N-R /R-N-X Atom-centred fragments
624 N-076 Ar-NO2 / R-N(-R)-O / RO-NO Atom-centred fragments
625 CI1-090 Cl attached to C2(sp2)-C4(sp2)/C1(sp)/C4(sp3)/X Atom-centred fragments
626 Cl-102 chloride ion Atom-centred fragments
627 S-106 R-SH Atom-centred fragments
628 S-107 R2S /RS-SR Atom-centred fragments
629 S-108 R=S Atom-centred fragments
630 S-109 R-SO-R Atom-centred fragments
631 S-110 R-SO2-R Atom-centred fragments
632 P-117 X3-P=X (phosphate) Atom-centred fragments
633 SsCH3 Sum of sCH3 E-states Atom-type E-state indices
634 SdCH2 Sum of dCH2 E-states Atom-type E-state indices
635 SssCH2 Sum of ssCH2 E-states Atom-type E-state indices
636 SdsCH Sum of dsCH E-states Atom-type E-state indices
637 SaaCH Sum of aaCH E-states Atom-type E-state indices
638 SsssCH Sum of sssCH E-states Atom-type E-state indices
639 SddC Sum of ddC E-states Atom-type E-state indices
640 StsC Sum of tsC E-states Atom-type E-state indices
641 SdssC Sum of dssC E-states Atom-type E-state indices
642 SaasC Sum of aasC E-states Atom-type E-state indices
643 SaaaC Sum of aaaC E-states Atom-type E-state indices
644 SssssC Sum of ssssC E-states Atom-type E-state indices
645 SsNH2 Sum of sSNH2 E-states Atom-type E-state indices
646 SssNH Sum of ssNH E-states Atom-type E-state indices
647 SsssN Sum of sssN E-states Atom-type E-state indices
648 SdsN Sum of dsN E-states Atom-type E-state indices
649 SaaN Sum of aaN E-states Atom-type E-state indices
650 SddsN Sum of ddsN E-states Atom-type E-state indices
651 SaasN Sum of aasN E-states Atom-type E-state indices
652 SaaNH Sum of aaNH E-states Atom-type E-state indices
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653 SsOH Sum of sOH E-states Atom-type E-state indices
654 SdO Sum of dO E-states Atom-type E-state indices
655 SssO Sum of ssO E-states Atom-type E-state indices
656 SaaO Sum of aaO E-states Atom-type E-state indices
657 SdsssP Sum of dsssP E-states Atom-type E-state indices
658 SsSH Sum of sSH E-states Atom-type E-state indices
659 SdS Sum of dS E-states Atom-type E-state indices
660 SssS Sum of ssS E-states Atom-type E-state indices
661 SaaS Sum of aaS E-states Atom-type E-state indices
662 SdssS Sum of dssS E-states Atom-type E-state indices
663 SddssS Sum of ddssS E-states Atom-type E-state indices
664 NsCH3 Number of atoms of type sCH3 Atom-type E-state indices
665 NdCH2 Number of atoms of type dCH2 Atom-type E-state indices
666 NssCH2 Number of atoms of type ssCH2 Atom-type E-state indices
667 NdsCH Number of atoms of type dsCH Atom-type E-state indices
668 NaaCH Number of atoms of type aaCH Atom-type E-state indices
669 NsssCH Number of atoms of type sssCH Atom-type E-state indices
670 NddC Number of atoms of type ddC Atom-type E-state indices
671 NtsC Number of atoms of type tsC Atom-type E-state indices
672 NdssC Number of atoms of type dssC Atom-type E-state indices
673 NaasC Number of atoms of type aasC Atom-type E-state indices
674 NaaaC Number of atoms of type aaaC Atom-type E-state indices
675 NssssC Number of atoms of type ssssC Atom-type E-state indices
676 NsNH2 Number of atoms of type sSNH2 Atom-type E-state indices
677 NssNH Number of atoms of type ssNH Atom-type E-state indices
678 NsssN Number of atoms of type sssN Atom-type E-state indices
679 NdsN Number of atoms of type dsN Atom-type E-state indices
680 NaaN Number of atoms of type aaN Atom-type E-state indices
681 NddsN Number of atoms of type ddsN Atom-type E-state indices
682 NaasN Number of atoms of type aasN Atom-type E-state indices
683 NaaNH Number of atoms of type aaNH Atom-type E-state indices
684 NsOH Number of atoms of type sOH Atom-type E-state indices
685 NdO Number of atoms of type dO Atom-type E-state indices
686 NssO Number of atoms of type ssO Atom-type E-state indices
687 NaaO Number of atoms of type aaO Atom-type E-state indices
688 NdsssP Number of atoms of type dsssP Atom-type E-state indices
689 NsSH Number of atoms of type sSH Atom-type E-state indices
690 NdS Number of atoms of type dS Atom-type E-state indices
691 NssS Number of atoms of type ssS Atom-type E-state indices
692 NaaS Number of atoms of type aaS Atom-type E-state indices
693 NdssS Number of atoms of type dssS Atom-type E-state indices
694 NddssS Number of atoms of type ddssS Atom-type E-state indices
695 CATS2D_00_DD CATS2D Donor-Donor at lag 00 CATS 2D

696 CATS2D_02_DD CATS2D Donor-Donor at lag 02 CATS 2D

697 CATS2D_03_DD CATS2D Donor-Donor at lag 03 CATS 2D

698 CATS2D_04_DD CATS2D Donor-Donor at lag 04 CATS 2D

699 CATS2D_05_DD CATS2D Donor-Donor at lag 05 CATS 2D

700 CATS2D_06_DD CATS2D Donor-Donor at lag 06 CATS 2D

701 CATS2D_07_DD CATS2D Donor-Donor at lag 07 CATS 2D

702 CATS2D_08_DD CATS2D Donor-Donor at lag 08 CATS 2D

703 CATS2D_09_DD CATS2D Donor-Donor at lag 09 CATS 2D

704 CATS2D_00_DA CATS2D Donor-Acceptor at lag 00 CATS 2D

705 CATS2D_02_DA CATS2D Donor-Acceptor at lag 02 CATS 2D

706 CATS2D_03_DA CATS2D Donor-Acceptor at lag 03 CATS 2D

707 CATS2D_04_DA CATS2D Donor-Acceptor at lag 04 CATS 2D

708 CATS2D_05_DA CATS2D Donor-Acceptor at lag 05 CATS 2D

709 CATS2D_06_DA CATS2D Donor-Acceptor at lag 06 CATS 2D

710 CATS2D_07_DA CATS2D Donor-Acceptor at lag 07 CATS 2D

711 CATS2D_08_DA CATS2D Donor-Acceptor at lag 08 CATS 2D

712 CATS2D_09_DA CATS2D Donor-Acceptor at lag 09 CATS 2D

713 CATS2D_00_DP CATS2D Donor-Positive at lag 00 CATS 2D

714 CATS2D_02_DP CATS2D Donor-Positive at lag 02 CATS 2D

715 CATS2D_03_DP CATS2D Donor-Positive at lag 03 CATS 2D

716 CATS2D_04_DP CATS2D Donor-Positive at lag 04 CATS 2D

717 CATS2D_05_DP CATS2D Donor-Positive at lag 05 CATS 2D

718 CATS2D_06_DP CATS2D Donor-Positive at lag 06 CATS 2D

719 CATS2D_07_DP CATS2D Donor-Positive at lag 07 CATS 2D

720 CATS2D_08_DP CATS2D Donor-Positive at lag 08 CATS 2D

721 CATS2D_09_DP CATS2D Donor-Positive at lag 09 CATS 2D

722 CATS2D_01_DN CATS2D Donor-Negative at lag 01 CATS 2D

723 CATS2D_02_DN CATS2D Donor-Negative at lag 02 CATS 2D

724 CATS2D_03_DN CATS2D Donor-Negative at lag 03 CATS 2D

725 CATS2D_04_DN CATS2D Donor-Negative at lag 04 CATS 2D
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726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798

CATS2D_05_DN
CATS2D_06_DN
CATS2D_07_DN
CATS2D_02_DL
CATS2D_03_DL
CATS2D_04_DL
CATS2D_05_DL
CATS2D_06_DL
CATS2D_07_DL
CATS2D_08_DL
CATS2D_09_DL
CATS2D_00_AA
CATS2D_01_AA
CATS2D_02_AA
CATS2D_03_AA
CATS2D_04_AA
CATS2D_05_AA
CATS2D_06_AA
CATS2D_07_AA
CATS2D_08_AA
CATS2D_09_AA
CATS2D_00_AP
CATS2D_02_AP
CATS2D_03_AP
CATS2D_04_AP
CATS2D_05_AP
CATS2D_06_AP
CATS2D_07_AP
CATS2D_08_AP
CATS2D_09_AP
CATS2D_00_AN
CATS2D_01_AN
CATS2D_02_AN
CATS2D_03_AN
CATS2D_04_AN
CATS2D_05_AN
CATS2D_06_AN
CATS2D_07_AN
CATS2D_02_AL
CATS2D_03_AL
CATS2D_04_AL
CATS2D_05_AL
CATS2D_06_AL
CATS2D_07_AL
CATS2D_08_AL
CATS2D_09_AL
CATS2D_00_PP

CATS2D_02_PP

CATS2D_04_PP

CATS2D_05_PP

CATS2D_06_PP

CATS2D_07_PP

CATS2D_02_PN
CATS2D_03_PN
CATS2D_04_PN
CATS2D_05_PN
CATS2D_06_PN

CATS2D_07_PN

CATS2D_02_PL

CATS2D_03_PL

CATS2D_04_PL

CATS2D_05_PL

CATS2D_06_PL

CATS2D_07_PL

CATS2D_08_PL

CATS2D_00_NN
CATS2D_01_NN
CATS2D_02_NN
CATS2D_03_NN
CATS2D_04_NN
CATS2D_05_NN
CATS2D_06_NN
CATS2D_00_NL

CATS2D Donor-Negative at lag 05
CATS2D Donor-Negative at lag 06
CATS2D Donor-Negative at lag 07
CATS2D Donor-Lipophilic at lag 02
CATS2D Donor-Lipophilic at lag 03
CATS2D Donor-Lipophilic at lag 04
CATS2D Donor-Lipophilic at lag 05
CATS2D Donor-Lipophilic at lag 06
CATS2D Donor-Lipophilic at lag 07
CATS2D Donor-Lipophilic at lag 08
CATS2D Donor-Lipophilic at lag 09
CATS2D Acceptor-Acceptor at lag 00
CATS2D Acceptor-Acceptor at lag 01
CATS2D Acceptor-Acceptor at lag 02
CATS2D Acceptor-Acceptor at lag 03
CATS2D Acceptor-Acceptor at lag 04
CATS2D Acceptor-Acceptor at lag 05
CATS2D Acceptor-Acceptor at lag 06
CATS2D Acceptor-Acceptor at lag 07
CATS2D Acceptor-Acceptor at lag 08
CATS2D Acceptor-Acceptor at lag 09
CATS2D Acceptor-Positive at lag 00
CATS2D Acceptor-Positive at lag 02
CATS2D Acceptor-Positive at lag 03
CATS2D Acceptor-Positive at lag 04
CATS2D Acceptor-Positive at lag 05
CATS2D Acceptor-Positive at lag 06
CATS2D Acceptor-Positive at lag 07
CATS2D Acceptor-Positive at lag 08
CATS2D Acceptor-Positive at lag 09
CATS2D Acceptor-Negative at lag 00
CATS2D Acceptor-Negative at lag 01
CATS2D Acceptor-Negative at lag 02
CATS2D Acceptor-Negative at lag 03
CATS2D Acceptor-Negative at lag 04
CATS2D Acceptor-Negative at lag 05
CATS2D Acceptor-Negative at lag 06
CATS2D Acceptor-Negative at lag 07
CATS2D Acceptor-Lipophilic at lag 02
CATS2D Acceptor-Lipophilic at lag 03
CATS2D Acceptor-Lipophilic at lag 04
CATS2D Acceptor-Lipophilic at lag 05
CATS2D Acceptor-Lipophilic at lag 06
CATS2D Acceptor-Lipophilic at lag 07
CATS2D Acceptor-Lipophilic at lag 08
CATS2D Acceptor-Lipophilic at lag 09
CATS2D Positive-Positive at lag 00
CATS2D Positive-Positive at lag 02
CATS2D Positive-Positive at lag 04
CATS2D Positive-Positive at lag 05
CATS2D Positive-Positive at lag 06
CATS2D Positive-Positive at lag 07
CATS2D Positive-Negative at lag 02
CATS2D Positive-Negative at lag 03
CATS2D Positive-Negative at lag 04
CATS2D Positive-Negative at lag 05
CATS2D Positive-Negative at lag 06
CATS2D Positive-Negative at lag 07
CATS2D Positive-Lipophilic at lag 02
CATS2D Positive-Lipophilic at lag 03
CATS2D Positive-Lipophilic at lag 04
CATS2D Positive-Lipophilic at lag 05
CATS2D Positive-Lipophilic at lag 06
CATS2D Positive-Lipophilic at lag 07
CATS2D Positive-Lipophilic at lag 08
CATS2D Negative-Negative at lag 00
CATS2D Negative-Negative at lag 01
CATS2D Negative-Negative at lag 02
CATS2D Negative-Negative at lag 03
CATS2D Negative-Negative at lag 04
CATS2D Negative-Negative at lag 05
CATS2D Negative-Negative at lag 06
CATS2D Negative-Lipophilic at lag 00

CATS 2D
CATS 2D
CATS 2D
CATS 2D
CATS 2D
CATS 2D
CATS 2D
CATS 2D
CATS 2D
CATS 2D
CATS 2D
CATS 2D
CATS 2D
CATS 2D
CATS 2D
CATS 2D
CATS 2D
CATS 2D
CATS 2D
CATS 2D
CATS 2D
CATS 2D
CATS 2D
CATS 2D
CATS 2D
CATS 2D
CATS 2D
CATS 2D
CATS 2D
CATS 2D
CATS 2D
CATS 2D
CATS 2D
CATS 2D
CATS 2D
CATS 2D
CATS 2D
CATS 2D
CATS 2D
CATS 2D
CATS 2D
CATS 2D
CATS 2D
CATS 2D
CATS 2D
CATS 2D
CATS 2D
CATS 2D
CATS 2D
CATS 2D
CATS 2D
CATS 2D
CATS 2D
CATS 2D
CATS 2D
CATS 2D
CATS 2D
CATS 2D
CATS 2D
CATS 2D
CATS 2D
CATS 2D
CATS 2D
CATS 2D
CATS 2D
CATS 2D
CATS 2D
CATS 2D
CATS 2D
CATS 2D
CATS 2D
CATS 2D
CATS 2D
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799 CATS2D_01_NL CATS2D Negative-Lipophilic at lag 01 CATS 2D

800 CATS2D_02_NL CATS2D Negative-Lipophilic at lag 02 CATS 2D

801 CATS2D_03_NL CATS2D Negative-Lipophilic at lag 03 CATS 2D

802 CATS2D_04_NL CATS2D Negative-Lipophilic at lag 04 CATS 2D

803 CATS2D_05_NL CATS2D Negative-Lipophilic at lag 05 CATS 2D

804 CATS2D_06_NL CATS2D Negative-Lipophilic at lag 06 CATS 2D

805 CATS2D_07_NL CATS2D Negative-Lipophilic at lag 07 CATS 2D

806 CATS2D_08_NL CATS2D Negative-Lipophilic at lag 08 CATS 2D

807 CATS2D_09_NL CATS2D Negative-Lipophilic at lag 09 CATS 2D

808 CATS2D_00_LL CATS2D Lipophilic-Lipophilic at lag 00 CATS 2D

809 CATS2D_01_LL CATS2D Lipophilic-Lipophilic at lag 01 CATS 2D

810 CATS2D_02_LL CATS2D Lipophilic-Lipophilic at lag 02 CATS 2D

811 CATS2D_03_LL CATS2D Lipophilic-Lipophilic at lag 03 CATS 2D

812 CATS2D_04_LL CATS2D Lipophilic-Lipophilic at lag 04 CATS 2D

813 CATS2D_05_LL CATS2D Lipophilic-Lipophilic at lag 05 CATS 2D

814 CATS2D_06_LL CATS2D Lipophilic-Lipophilic at lag 06 CATS 2D

815 CATS2D_07_LL CATS2D Lipophilic-Lipophilic at lag 07 CATS 2D

816 CATS2D_08_LL CATS2D Lipophilic-Lipophilic at lag 08 CATS 2D

817 CATS2D_09_LL CATS2D Lipophilic-Lipophilic at lag 09 CATS 2D

818 T(N..N) sum of topological distances between N..N 2D Atom Pairs
819 T(N..O) sum of topological distances between N..O 2D Atom Pairs
820 T(N..S) sum of topological distances between N..S 2D Atom Pairs
821 T(O..0) sum of topological distances between O..0 2D Atom Pairs
822 T(O..S) sum of topological distances between O..S 2D Atom Pairs
823 T(S..S) sum of topological distances between S..S 2D Atom Pairs
824 BO1[C-C] Presence/absence of C - C at topological distance 1 2D Atom Pairs
825 BO1[C-N] Presence/absence of C - N at topological distance 1 2D Atom Pairs
826 BO1[C-O] Presence/absence of C - O at topological distance 1 2D Atom Pairs
827 BO1[C-S] Presence/absence of C - S at topological distance 1 2D Atom Pairs
828 BO1[N-O] Presence/absence of N - O at topological distance 1 2D Atom Pairs
829 BO1[O-S] Presence/absence of O - S at topological distance 1 2D Atom Pairs
830 BO1[O-P] Presence/absence of O - P at topological distance 1 2D Atom Pairs
831 BO1[S-S] Presence/absence of S - S at topological distance 1 2D Atom Pairs
832 B02[C-C] Presence/absence of C - C at topological distance 2 2D Atom Pairs
833 B02[C-N] Presence/absence of C - N at topological distance 2 2D Atom Pairs
834 B02[C-O] Presence/absence of C - O at topological distance 2 2D Atom Pairs
835 B02[C-S] Presence/absence of C - S at topological distance 2 2D Atom Pairs
836 BO2[N-N] Presence/absence of N - N at topological distance 2 2D Atom Pairs
837 BO02[N-O] Presence/absence of N - O at topological distance 2 2D Atom Pairs
838 BO2[N-S] Presence/absence of N - S at topological distance 2 2D Atom Pairs
839 B02[0-0] Presence/absence of O - O at topological distance 2 2D Atom Pairs
840 B02[O-S] Presence/absence of O - S at topological distance 2 2D Atom Pairs
841 B02[S-S] Presence/absence of S - S at topological distance 2 2D Atom Pairs
842 BO3[C-C] Presence/absence of C - C at topological distance 3 2D Atom Pairs
843 BO3[C-N] Presence/absence of C - N at topological distance 3 2D Atom Pairs
844 B03[C-0] Presence/absence of C - O at topological distance 3 2D Atom Pairs
845 BO3[C-S] Presence/absence of C - S at topological distance 3 2D Atom Pairs
846 BO3[N-N] Presence/absence of N - N at topological distance 3 2D Atom Pairs
847 BO3[N-O] Presence/absence of N - O at topological distance 3 2D Atom Pairs
848 BO3[N-S] Presence/absence of N - S at topological distance 3 2D Atom Pairs
849 B03[0-0] Presence/absence of O - O at topological distance 3 2D Atom Pairs
850 B03[O-S] Presence/absence of O - S at topological distance 3 2D Atom Pairs
851 BO3[S-S] Presence/absence of S - S at topological distance 3 2D Atom Pairs
852 B04[C-C] Presence/absence of C - C at topological distance 4 2D Atom Pairs
853 BO4[C-N] Presence/absence of C - N at topological distance 4 2D Atom Pairs
854 B04[C-0] Presence/absence of C - O at topological distance 4 2D Atom Pairs
855 B0O4[C-S] Presence/absence of C - S at topological distance 4 2D Atom Pairs
856 BO4[N-N] Presence/absence of N - N at topological distance 4 2D Atom Pairs
857 B04[N-O] Presence/absence of N - O at topological distance 4 2D Atom Pairs
858 BO4[N-S] Presence/absence of N - S at topological distance 4 2D Atom Pairs
859 B04[0-0] Presence/absence of O - O at topological distance 4 2D Atom Pairs
860 B04[O-S] Presence/absence of O - S at topological distance 4 2D Atom Pairs
861 B04[S-S] Presence/absence of S - S at topological distance 4 2D Atom Pairs
862 BO05[C-C] Presence/absence of C - C at topological distance 5 2D Atom Pairs
863 BO5[C-N] Presence/absence of C - N at topological distance 5 2D Atom Pairs
864 B05[C-O] Presence/absence of C - O at topological distance 5 2D Atom Pairs
865 BO5[C-S] Presence/absence of C - S at topological distance 5 2D Atom Pairs
866 BO5[N-N] Presence/absence of N - N at topological distance 5 2D Atom Pairs
867 BO5[N-O] Presence/absence of N - O at topological distance 5 2D Atom Pairs
868 BO5[N-S] Presence/absence of N - S at topological distance 5 2D Atom Pairs
869 B05[0-0] Presence/absence of O - O at topological distance 5 2D Atom Pairs
870 BO5[0-S] Presence/absence of O - S at topological distance 5 2D Atom Pairs
871 BO5[S-S] Presence/absence of S - S at topological distance 5 2D Atom Pairs
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Chapter 3 support information

No. Name Description Block

872 B06[C-C] Presence/absence of C - C at topological distance 6 2D Atom Pairs
873 BO6[C-N] Presence/absence of C - N at topological distance 6 2D Atom Pairs
874 B06[C-0] Presence/absence of C - O at topological distance 6 2D Atom Pairs
875 BO6[C-S] Presence/absence of C - S at topological distance 6 2D Atom Pairs
876 BO6[N-N] Presence/absence of N - N at topological distance 6 2D Atom Pairs
877 BO6[N-O] Presence/absence of N - O at topological distance 6 2D Atom Pairs
878 BO6[N-S] Presence/absence of N - S at topological distance 6 2D Atom Pairs
879 B06[0-0] Presence/absence of O - O at topological distance 6 2D Atom Pairs
880 B06[O-S] Presence/absence of O - S at topological distance 6 2D Atom Pairs
881 BO6[S-S] Presence/absence of S - S at topological distance 6 2D Atom Pairs
882 B0O7[C-C] Presence/absence of C - C at topological distance 7 2D Atom Pairs
883 BO7[C-N] Presence/absence of C - N at topological distance 7 2D Atom Pairs
884 B07[C-0] Presence/absence of C - O at topological distance 7 2D Atom Pairs
885 BO7[C-S] Presence/absence of C - S at topological distance 7 2D Atom Pairs
886 BO7[N-N] Presence/absence of N - N at topological distance 7 2D Atom Pairs
887 BO7[N-O] Presence/absence of N - O at topological distance 7 2D Atom Pairs
888 B07[0-0] Presence/absence of O - O at topological distance 7 2D Atom Pairs
889 BO7[S-S] Presence/absence of S - S at topological distance 7 2D Atom Pairs
890 BO8[C-C] Presence/absence of C - C at topological distance 8 2D Atom Pairs
891 BOS[C-N] Presence/absence of C - N at topological distance 8 2D Atom Pairs
892 BOS[C-O] Presence/absence of C - O at topological distance 8 2D Atom Pairs
893 BOS[C-S] Presence/absence of C - S at topological distance 8 2D Atom Pairs
894 BOS[N-O] Presence/absence of N - O at topological distance 8 2D Atom Pairs
895 B08[0-0] Presence/absence of O - O at topological distance 8 2D Atom Pairs
896 B09[C-C] Presence/absence of C - C at topological distance 9 2D Atom Pairs
897 BO9[C-N] Presence/absence of C - N at topological distance 9 2D Atom Pairs
898 B09[C-O] Presence/absence of C - O at topological distance 9 2D Atom Pairs
899 B09[C-S] Presence/absence of C - S at topological distance 9 2D Atom Pairs
900 BO9[N-O] Presence/absence of N - O at topological distance 9 2D Atom Pairs
901 B09[0-0] Presence/absence of O - O at topological distance 9 2D Atom Pairs
902 B09[S-S] Presence/absence of S - S at topological distance 9 2D Atom Pairs
903 B10[C-C] Presence/absence of C - C at topological distance 10 2D Atom Pairs
904 BI10[C-N] Presence/absence of C - N at topological distance 10 2D Atom Pairs
905 B10[C-O] Presence/absence of C - O at topological distance 10 2D Atom Pairs
906 B10[N-O] Presence/absence of N - O at topological distance 10 2D Atom Pairs
907 B10[0-0O] Presence/absence of O - O at topological distance 10 2D Atom Pairs
908 B10[S-S] Presence/absence of S - S at topological distance 10 2D Atom Pairs
909 FO1[C-C] Frequency of C - C at topological distance 1 2D Atom Pairs
910 FOI[C-N] Frequency of C - N at topological distance 1 2D Atom Pairs
911 FO1[C-0O] Frequency of C - O at topological distance 1 2D Atom Pairs
912 FO1[C-S] Frequency of C - S at topological distance 1 2D Atom Pairs
913 FO1[N-O] Frequency of N - O at topological distance 1 2D Atom Pairs
914 FO1[O-S] Frequency of O - S at topological distance 1 2D Atom Pairs
915 FO1[O-P] Frequency of O - P at topological distance 1 2D Atom Pairs
916 FO1[S-S] Frequency of S - S at topological distance 1 2D Atom Pairs
917 F02[C-C] Frequency of C - C at topological distance 2 2D Atom Pairs
918 FO2[C-N] Frequency of C - N at topological distance 2 2D Atom Pairs
919 F02[C-0O] Frequency of C - O at topological distance 2 2D Atom Pairs
920 F02[C-S] Frequency of C - S at topological distance 2 2D Atom Pairs
921 FO2[N-N] Frequency of N - N at topological distance 2 2D Atom Pairs
922 FO2[N-O] Frequency of N - O at topological distance 2 2D Atom Pairs
923 FO2[N-S] Frequency of N - S at topological distance 2 2D Atom Pairs
924 F02[0-0] Frequency of O - O at topological distance 2 2D Atom Pairs
925 F02[O-S] Frequency of O - S at topological distance 2 2D Atom Pairs
926 FO02[S-S] Frequency of S - S at topological distance 2 2D Atom Pairs
927 FO3[C-C] Frequency of C - C at topological distance 3 2D Atom Pairs
928 FO3[C-N] Frequency of C - N at topological distance 3 2D Atom Pairs
929 F03[C-O] Frequency of C - O at topological distance 3 2D Atom Pairs
930 FO3[C-S] Frequency of C - S at topological distance 3 2D Atom Pairs
931 FO3[N-N] Frequency of N - N at topological distance 3 2D Atom Pairs
932 FO3[N-O] Frequency of N - O at topological distance 3 2D Atom Pairs
933 FO3[N-S] Frequency of N - S at topological distance 3 2D Atom Pairs
934 FO03[0-0] Frequency of O - O at topological distance 3 2D Atom Pairs
935 F03[0-S] Frequency of O - S at topological distance 3 2D Atom Pairs
936 FO3[S-S] Frequency of S - S at topological distance 3 2D Atom Pairs
937 F04[C-C] Frequency of C - C at topological distance 4 2D Atom Pairs
938 FO4[C-N] Frequency of C - N at topological distance 4 2D Atom Pairs
939 F04[C-0O] Frequency of C - O at topological distance 4 2D Atom Pairs
940 FO4[C-S] Frequency of C - S at topological distance 4 2D Atom Pairs
941 FO4[N-N] Frequency of N - N at topological distance 4 2D Atom Pairs
942 FO4[N-O] Frequency of N - O at topological distance 4 2D Atom Pairs
943 FO4[N-S] Frequency of N - S at topological distance 4 2D Atom Pairs
944 F04[0-0] Frequency of O - O at topological distance 4 2D Atom Pairs
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No. Name Description Block

945 F04[O-S] Frequency of O - S at topological distance 4 2D Atom Pairs

946 FO04[S-S] Frequency of S - S at topological distance 4 2D Atom Pairs

947 FO5[C-C] Frequency of C - C at topological distance 5 2D Atom Pairs

948 FO5[C-N] Frequency of C - N at topological distance 5 2D Atom Pairs

949 FO5[C-O] Frequency of C - O at topological distance 5 2D Atom Pairs

950 FO5[C-S] Frequency of C - S at topological distance 5 2D Atom Pairs

951 FO5[N-N] Frequency of N - N at topological distance 5 2D Atom Pairs

952 FO5[N-O] Frequency of N - O at topological distance 5 2D Atom Pairs

953 FO5[N-S] Frequency of N - S at topological distance 5 2D Atom Pairs

954 FO05[0-0] Frequency of O - O at topological distance 5 2D Atom Pairs

955 FO5[0-S] Frequency of O - S at topological distance 5 2D Atom Pairs

956 FO5[S-S] Frequency of S - S at topological distance 5 2D Atom Pairs

957 FO6[C-C] Frequency of C - C at topological distance 6 2D Atom Pairs

958 FO6[C-N] Frequency of C - N at topological distance 6 2D Atom Pairs

959 FO06[C-0] Frequency of C - O at topological distance 6 2D Atom Pairs

960 FO6[C-S] Frequency of C - S at topological distance 6 2D Atom Pairs

961 FO6[N-N] Frequency of N - N at topological distance 6 2D Atom Pairs

962 FO6[N-O] Frequency of N - O at topological distance 6 2D Atom Pairs

963 FO6[N-S] Frequency of N - S at topological distance 6 2D Atom Pairs

964 F06[0-0] Frequency of O - O at topological distance 6 2D Atom Pairs

965 F06[O-S] Frequency of O - S at topological distance 6 2D Atom Pairs

966 FO6[S-S] Frequency of S - S at topological distance 6 2D Atom Pairs

967 FO7[C-C] Frequency of C - C at topological distance 7 2D Atom Pairs

968 FO7[C-N] Frequency of C - N at topological distance 7 2D Atom Pairs

969 F07[C-0] Frequency of C - O at topological distance 7 2D Atom Pairs

970 FO7[C-S] Frequency of C - S at topological distance 7 2D Atom Pairs

971 FO7[N-N] Frequency of N - N at topological distance 7 2D Atom Pairs

972 FO7[N-O] Frequency of N - O at topological distance 7 2D Atom Pairs

973 F07[0-0] Frequency of O - O at topological distance 7 2D Atom Pairs

974 FO7[S-S] Frequency of S - S at topological distance 7 2D Atom Pairs

975 FO8[C-C] Frequency of C - C at topological distance 8 2D Atom Pairs

976 FO8[C-N] Frequency of C - N at topological distance 8 2D Atom Pairs

977 FO8[C-0O] Frequency of C - O at topological distance 8 2D Atom Pairs

978 FO8[C-S] Frequency of C - S at topological distance 8 2D Atom Pairs

979 FO8[N-O] Frequency of N - O at topological distance 8 2D Atom Pairs

980 FO8[0-0] Frequency of O - O at topological distance 8 2D Atom Pairs

981 FO9[C-C] Frequency of C - C at topological distance 9 2D Atom Pairs

982 FO9[C-N] Frequency of C - N at topological distance 9 2D Atom Pairs

983 FO09[C-0] Frequency of C - O at topological distance 9 2D Atom Pairs

984 FO9[C-S] Frequency of C - S at topological distance 9 2D Atom Pairs

985 FO9[N-O] Frequency of N - O at topological distance 9 2D Atom Pairs

986 F09[0-0] Frequency of O - O at topological distance 9 2D Atom Pairs

987 FO9[S-S] Frequency of S - S at topological distance 9 2D Atom Pairs

988 F10[C-C] Frequency of C - C at topological distance 10 2D Atom Pairs

989 F10[C-N] Frequency of C - N at topological distance 10 2D Atom Pairs

990 F10[C-0O] Frequency of C - O at topological distance 10 2D Atom Pairs

991 FI0[N-O] Frequency of N - O at topological distance 10 2D Atom Pairs

992 F10[0-0] Frequency of O - O at topological distance 10 2D Atom Pairs

993 F10[S-S] Frequency of S - S at topological distance 10 2D Atom Pairs

994 Uc unsaturation count Molecular properties
995 Ui unsaturation index Molecular properties
996 Hy hydrophilic factor Molecular properties
997 TPSA(NO) topological polar surface area using N,O polar contributions Molecular properties
998 TPSA(Tot) topological polar surface area using N,O,S,P polar contributions Molecular properties
999 SAacc surface area of acceptor atoms from P_VSA-like descriptors Molecular properties
1000 SAdon surface area of donor atoms from P_VSA-like descriptors Molecular properties
1001 Vx McGowan volume Molecular properties
1002 VvdwMG van der Waals volume from McGowan volume Molecular properties
1003 Ro5 Lipinski Rule of 5 Drug-like indices
1004 cRo5 Complementary Lipinski Alert index Drug-like indices
1005 DLS_05 modified drug-like score from Zheng et al. (2 rules) Drug-like indices
1006 DLS_07 modified drug-like score from Veber et al. (2 rules) Drug-like indices
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Chapter 6 support information

Table C.1 Standard performance measures of LDA, KNN, and NBC models for train set (%).

Models  PVOCs Sensitivity Specificity Precision Recall F1 score Accuracy
KNN cis-Jasmone 96.55+12.23  97.09+4.56  77.5+35.8 96.55+12.23  91.11+15.66  97.54+6.63
a-Pinene 82.89+22.24  99.07+£2.95 934225 82.89+22.24  88.72+13.54  91.1+11.69
Limonene 95.58+12.1 98.81+2.85 91+21.77 95.58+12.1 92.86+13.37  97.31+6.29
y-Terpiene 96+12.34 99.2+2.18 94+16.33 96+12.34 93.47+£12.68  97.6+6.13
cis-Jasmone+a-Pinene 89.61+21.69 95.74+4.12 68+31.4 89.61+21.69  77.72+17.84  92.98+11.17
cis-Jasmone+Limonene  98.23+7.52 98.92+3.24  91.5+25.68  98.23+7.52 97.16+8.55 98.94+3.79
o-Pinene+Limonene 80.17+21.15  99.65+1.52  97.5+10.95 80.17+21.15 86.2+15.21 89.91+10.69
Limonene+y-Terpiene 98.96+5.83 99.1+2.86 93+22.5 98.96+5.83 97.29+8.68 99.27+2.99
LDA cis-Jasmone 99.88+1.25 99.98+0.2 99.86+1.43  99.88+1.25 99.86+1.01 99.93+0.63
o-Pinene 80.19+8.24 99.77+0.66  98.43+4.49  80.19+8.24 88.15+5.54 89.98+4.2
Limonene 99.57+2.45 98+1.35 85.57+£9.84  99.57+2.45 91.73+£5.85 98.78+1.4
y-Terpiene 100+0 99.74+0.68  98.14+4.83  100+0 99+2.6 99.87+0.34
cis-Jasmone+a-Pinene 78.01+8.15 98.25+0.77  88+5.26 78.01+8.15 82.56+6.15 88.13+4.32
cis-Jasmone+Limonene  99.13+3.21 99.98+0.2 99.86+1.43  99.13+3.21 99.46+1.86 99.55+1.6
o-Pinene+Limonene 98.7+4.5 96.55+1.31 74.86+9.76  98.7+4.5 84.7+6.07 97.62+2.2
Limonene+y-Terpiene 98.75+3.77 100+0 100+0 98.75+3.77 99.33+2.01 99.38+1.88
NBC cis-Jasmone 95.55+6.86 98.4+1.17 88.57+8.37  95.55+6.86 91.63+5.75 96.98+3.53
a-Pinene 79.36+8.74 97.73+1.34  84.14+9.5 79.36+8.74 81.28+6.89 88.55+4.55
Limonene 99.75+1.76 99.9+0.44 99.29+3.13  99.75+1.76 99.48+1.9 99.83+0.9
y-Terpiene 99.88+1.25 10040 100+0 99.88+1.25 99.93+0.67 99.94+0.63
cis-Jasmone+a-Pinene 94.54+8.22 98.42+0.84  88.86+5.95  94.54+8.22 91.42+5.87 96.48+4.29
cis-Jasmone+Limonene  100+0 100+0 100+0 100+0 100+0 100+0
o-Pinene+Limonene 89.61+5.95 99.19+1.24  94.29+8.85 89.61+5.95 91.61+5.65 94.4+3.11

Limonene+y-Terpiene 1000 1000 1000 1000 1000 1000
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Table C.2 Standard performance measures of LDA, KNN, and NBC models for test set (%).

Models  PVOCs Sensitivity Specificity Precision Recall F1 score Accuracy

KNN cis-Jasmone 95.55+6.86 98.4+1.17 88.57+8.37  95.55+6.86 91.63+5.75 96.98+3.53
a-Pinene 79.36+8.74 97.73+1.34  84.14+9.5 79.36+8.74 81.28+6.89 88.55+4.55
Limonene 99.75+1.76 99.9+0.44 99.2943.13  99.75+1.76 99.48+1.9 99.83+0.9
y-Terpiene 99.88+1.25 100+0 100+0 99.88+1.25 99.93+0.67 99.94+0.63
cis-Jasmone+a-Pinene 94.54+8.22 98.42+0.84  88.86+5.95 94.54+8.22 91.42+5.87 96.48+4.29
cis-Jasmone+Limonene 1000 100+0 100+0 10040 10040 10040
o-Pinene+Limonene 89.61+£5.95 99.19+1.24  94.29+48.85  89.61+5.95 91.61+5.65 94.4+3.11
Limonene+y-Terpiene 1000 1000 1000 1000 1000 1000

LDA cis-Jasmone 98.64+8.18 98.87+2.8 91.5+21.39  98.64+8.18 94.9+12.51 98.87+4.48
a-Pinene 74.74+24.83  98.72+3.37  90.5+25.32  74.74+24.83  83.05+15.4 86.85+13.13
Limonene 89.82+23.48  96.79+4.26  76+32.16 89.82+23.48  85.04+18.39  93.55+12.81
y-Terpiene 1000 98.16+3.34  86+25.7 100+0 92.44+14.03  99.24+1.4

cis-Jasmone+a-Pinene 75.29+22.66  98.33+3.12  88+22.61 75.29+22.66  78.63+17.65  86.86+11.59
cis-Jasmone+Limonene  95.62+11.32  99.74+1.55 98+12.14 95.62+11.32  96.7+8.05 97.74+5.65

a-Pinene+Limonene 98.24+8.14 95.12+4.46  62.5+£35.09 98.24+8.14 81.45+16.67  97.35+4.28
Limonene+y-Terpiene 94.67+12.28  100+0 1000 94.67£12.28  96.8+7.37 97.33+6.14
NBC cis-Jasmone 86.29+21.78  97.09+3.74  78.5+27.76  86.29+21.78  80.66+17.79  91.79+11.3
a-Pinene 69.39+29.74  95.74+4.48  69+33.17 69.39+29.74  71.32+18.07  82.74+15.86
Limonene 89.65+18.38  98.83+3.37 91+26 89.65+18.38  92.3+12.05 94.54+9.6
y-Terpiene 97.94+9.08 98.16+3.34  86+25.7 97.94+9.08 91.13+£14.52  98.21+4.58
cis-Jasmone+a-Pinene 89.52+16.37 98.36+3.25  87.5+25 89.52+16.37 87.08+£13.94 94.11+7.87
cis-Jasmone+Limonene 1000 100+0 100+0 100+0 100+0 100+0
a-Pinene+Limonene 89.29+20.2 97914351  84.5+26.3 89.29+20.2 86.53+17.51  93.71+10.77

Limonene+y-Terpiene 99.75+1.76 98+14.07 100+0 100+0 100+0 100+0
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